Structural Engineering of Hierarchical Aerogels Comprised of Multi-dimensional Gradient Carbon Nanoarchitectures for Highly Efficient Microwave Absorption
Corresponding Author: Lujun Pan
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 144
Abstract
Recently, multilevel structural carbon aerogels are deemed as attractive candidates for microwave absorbing materials. Nevertheless, excessive stack and agglomeration for low-dimension carbon nanomaterials inducing impedance mismatch are significant challenges. Herein, the delicate “3D helix–2D sheet–1D fiber–0D dot” hierarchical aerogels have been successfully synthesized, for the first time, by sequential processes of hydrothermal self-assembly and in-situ chemical vapor deposition method. Particularly, the graphene sheets are uniformly intercalated by 3D helical carbon nanocoils, which give a feasible solution to the mentioned problem and endows the as-obtained aerogel with abundant porous structures and better dielectric properties. Moreover, by adjusting the content of 0D core–shell structured particles and the parameters for growth of the 1D carbon nanofibers, tunable electromagnetic properties and excellent impedance matching are achieved, which plays a vital role in the microwave absorption performance. As expected, the optimized aerogels harvest excellent performance, including broad effective bandwidth and strong reflection loss at low filling ratio and thin thickness. This work gives valuable guidance and inspiration for the design of hierarchical materials comprised of dimensional gradient structures, which holds great application potential for electromagnetic wave attenuation.
Highlights:
1 The delicate “3D helix–2D sheet–1D fiber–0D dot” hierarchical aerogels were successfully synthesized.
2 The graphene sheets are uniformly intercalated by helical carbon nanocoils, which endow the as-obtained aerogel with abundant porous structures and better dielectric properties.
3 By adjusting the growth parameters of 0D core-shell structured particles and 1D carbon nanofibers, the tunable electromagnetic properties and excellent impedance matching are achieved.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Zeng, X. Cheng, R. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168, 606–623 (2020). https://doi.org/10.1016/j.carbon.2020.07.028
- D. Zhi, T. Li, J. Li, H. Ren, F. Meng, A review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption. Compos. Pt. B-Eng. 211, 108642 (2021). https://doi.org/10.1016/j.compositesb.2021.108642
- Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
- M. Zhang, C. Han, W.-Q. Cao, M.-S. Cao, H.-J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13(1), 27 (2021). https://doi.org/10.1007/s40820-020-00552-9
- G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011). https://doi.org/10.1021/cm103441u
- J. Deng, X. Zhang, B. Zhao, Z. Bai, S. Wen et al., Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J. Mater. Chem. C 6(26), 7128–7140 (2018). https://doi.org/10.1039/C8TC02520G
- D. Liu, Y. Du, Z. Li, Y. Wang, P. Xu et al., Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties. J. Mater. Chem. C 6(36), 9615–9623 (2018). https://doi.org/10.1039/C8TC02931H
- Y. Duan, Z. Xiao, X. Yan, Z. Gao, Y. Tang et al., Enhanced electromagnetic microwave absorption property of peapod-like MnO@ carbon nanowires. ACS Appl. Mater. Interfaces 10(46), 40078–40087 (2018). https://doi.org/10.1021/acsami.8b11395
- J. Yang, W. Yang, F. Li, Y. Yang, Research and development of high-performance new microwave absorbers based on rare earth transition metal compounds: a review. J. Magn. Magn. Mater. 497, 165961 (2020). https://doi.org/10.1016/j.jmmm.2019.165961
- Y. Cheng, G. Ji, Z. Li, H. Lv, W. Liu, Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: effect of Fe/Co atomic ratio. J. Alloys Compd. 704, 289–295 (2017). https://doi.org/10.1016/j.jallcom.2017.02.024
- C. Chen, J. Xi, E. Zhou, L. Peng, Z. Chen et al., Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10(2), 26 (2018). https://doi.org/10.1007/s40820-017-0179-8
- H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245–253 (2019). https://doi.org/10.1016/j.carbon.2018.10.027
- P. Liu, C. Zhu, S. Gao, C. Guan, Y. Huang et al., N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon 163, 348–359 (2020). https://doi.org/10.1016/j.carbon.2020.03.041
- D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu et al., Rational design of core-shell Co@ C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@ SiO2@ TiO2 and CoNi@ Air@ TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
- X. Wang, T. Zhu, S. Chang, Y. Lu, W. Mi et al., 3D nest-like architecture of core–shell CoFe2O4@ 1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 12(9), 11252–11264 (2020). https://doi.org/10.1021/acsami.9b23489
- R. Shu, Y. Wu, W. Li, J. Zhang, Y. Liu et al., Fabrication of ferroferric oxide–carbon/reduced graphene oxide nanocomposites derived from Fe-based metal–organic frameworks for microwave absorption. Compos. Sci. Technol. 196, 108240 (2020). https://doi.org/10.1016/j.compscitech.2020.108240
- X. Xu, G. Wang, G. Wan, S. Shi, C. Hao et al., Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption. Chem. Eng. J. 382, 122980 (2020). https://doi.org/10.1016/j.cej.2019.122980
- Z. Yang, M. Li, L. Yang, J. Liu, Y. Wang et al., Constructing uniform Fe3O4@ C@ MnO2 microspheres with yolk-shell interior toward enhancement in microwave absorption. J. Alloys Compd. 817, 152795 (2020). https://doi.org/10.1016/j.jallcom.2019.152795
- X. Liu, C. Hao, L. He, C. Yang, Y. Chen et al., Yolk–shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 11(8), 4169–4182 (2018). https://doi.org/10.1007/s12274-018-2006-z
- P. Liu, S. Gao, X. Liu, Y. Huang, W. He et al., Rational construction of hierarchical hollow CuS@ CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials. Compos. Pt. B-Eng. 192, 107992 (2020). https://doi.org/10.1016/j.compositesb.2020.107992
- Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 29(28), 1901448 (2019). https://doi.org/10.1002/adfm.201901448
- T. Hou, B. Wang, M. Ma, A. Feng, Z. Huang et al., Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties. Compos. Pt. B-Eng. 180, 107577 (2020). https://doi.org/10.1016/j.compositesb.2019.107577
- N. Yang, Z.-X. Luo, S.-C. Chen, G. Wu, Y.-Z. Wang, Fe3O4 nanoparticle/n-doped carbon hierarchically hollow microspheres for broadband and high-performance microwave absorption at an ultralow filler loading. ACS Appl. Mater. Interfaces 12(16), 18952–18963 (2020). https://doi.org/10.1021/acsami.0c04185
- Z. Hou, J. Xue, H. Wei, X. Fan, F. Ye et al., Tailorable microwave absorption properties of RGO/SiC/CNT nanocomposites with 3D hierarchical structure. Ceram. Int. 46(11), 18160–18167 (2020). https://doi.org/10.1016/j.ceramint.2020.04.137
- L. Liu, N. He, T. Wu, P. Hu, G. Tong, Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem. Eng. J. 355, 103–108 (2019). https://doi.org/10.1016/j.cej.2018.08.131
- Y. Zhang, H. Meng, Y. Shi, X. Zhang, C. Liu et al., TiN/Ni/C ternary composites with expanded heterogeneous interfaces for efficient microwave absorption. Compos. Pt. B-Eng. 193, 108028 (2020). https://doi.org/10.1016/j.compositesb.2020.108028
- L. Yan, M. Zhang, S. Zhao, T. Sun, B. Zhang et al., Wire-in-tube ZnO@ carbon by molecular layer deposition: accurately tunable electromagnetic parameters and remarkable microwave absorption. Chem. Eng. J. 382, 122860 (2020). https://doi.org/10.1016/j.cej.2019.122860
- L. Xing, X. Li, Z. Wu, X. Yu, J. Liu et al., 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 379, 122241 (2020). https://doi.org/10.1016/j.cej.2019.122241
- J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@ MXene@ MoS2 core–sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
- X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12(1), 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
- N. Li, G.-W. Huang, Y.-Q. Li, H.-M. Xiao, Q.-P. Feng et al., Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 9(3), 2973–2983 (2017). https://doi.org/10.1021/acsami.6b13142
- S. Zhao, Z. Gao, C. Chen, G. Wang, B. Zhang et al., Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon 98, 196–203 (2016). https://doi.org/10.1016/j.carbon.2015.10.101
- M. Zhang, Z. Jiang, X. Lv, X. Zhang, Y. Zhang et al., Microwave absorption performance of reduced graphene oxide with negative imaginary permeability. J. Phys. D-Appl. Phys. 53(2), 02LT01 (2019). https://doi.org/10.1088/1361-6463/ab48a7
- C. Zhou, S. Geng, X. Xu, T. Wang, L. Zhang et al., Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108, 234–241 (2016). https://doi.org/10.1016/j.carbon.2016.07.015
- R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
- X. Xu, S. Shi, Y. Tang, G. Wang, M. Zhou et al., Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 8(5), 2002658 (2021). https://doi.org/10.1002/advs.202002658
- C. Deng, Y. Sun, L. Pan, T. Wang, Y. Xie et al., Thermal diffusivity of a single carbon nanocoil: uncovering the correlation with temperature and domain size. ACS Nano 10(10), 9710–9719 (2016). https://doi.org/10.1021/acsnano.6b05715
- H. Ma, K. Nakata, L. Pan, K. Hirahara, Y. Nakayama, Relationship between the structure of carbon nanocoils and their electrical property. Carbon 73, 71–77 (2014). https://doi.org/10.1016/j.carbon.2014.02.038
- Y. Sun, C. Wang, L. Pan, X. Fu, P. Yin et al., Electrical conductivity of single polycrystalline-amorphous carbon nanocoils. Carbon 98, 285–290 (2016). https://doi.org/10.1016/j.carbon.2015.11.025
- S. Xu, Z. Fan, S. Yang, Y. Zhao, L. Pan, Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers. Chem. Eng. J. 404, 126064 (2021). https://doi.org/10.1016/j.cej.2020.126064
- C. Deng, L. Pan, D. Zhang, C. Li, H. Nasir, A super stretchable and sensitive strain sensor based on a carbon nanocoil network fabricated by a simple peeling-off approach. Nanoscale 9(42), 16404–16411 (2017). https://doi.org/10.1039/C7NR05486F
- R. Cui, L. Pan, D. Zhang, H. Nasir, Electromagnetic microwave absorption properties of carbon nanocoils/tissue. Diam. Relat. Mat. 77, 53–56 (2017). https://doi.org/10.1016/j.diamond.2017.05.014
- Y. Zhao, H. Zhang, X. Yang, H. Huang, G. Zhao et al., In situ construction of hierarchical core–shell Fe3O4@ C nanoparticles–helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption. Carbon 171, 395–408 (2021). https://doi.org/10.1016/j.carbon.2020.09.036
- G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). https://doi.org/10.1021/nn304630h
- Y. Zhao, J. Wang, H. Huang, T. Cong, S. Yang et al., Growth of carbon nanocoils by porous α-Fe2O3/SnO2 catalyst and its buckypaper for high efficient adsorption. Nano-Micro Lett. 12(1), 23 (2020). https://doi.org/10.1007/s40820-019-0365-y
- Y. Zhao, J. Wang, H. Huang, H. Zhang, T. Cong et al., Catalytic anisotropy induced by multi-particles for growth of carbon nanocoils. Carbon 166, 101–112 (2020). https://doi.org/10.1016/j.carbon.2020.05.007
- H. Huang, L. Xia, Y. Zhao, H. Zhang, T. Cong et al., Three-dimensional porous reduced graphene oxide/PEDOT: PSS aerogel: facile preparation and high performance for supercapacitor electrodes. Electrochim. Acta 364, 137297 (2020). https://doi.org/10.1016/j.electacta.2020.137297
- H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang et al., Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 142, 346–353 (2019). https://doi.org/10.1016/j.carbon.2018.10.056
- R. Shu, J. Zhang, C. Guo, Y. Wu, Z. Wan et al., Facile synthesis of nitrogen-doped reduced graphene oxide/nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band. Chem. Eng. J. 384, 123266 (2020). https://doi.org/10.1016/j.cej.2019.123266
- J. Zhang, R. Shu, Y. Wu, Z. Wan, M. Zheng, Facile fabrication and enhanced microwave absorption properties of reduced graphene oxide/tin dioxide binary nanocomposites in the X-band. Synth. Met. 257, 116157 (2019). https://doi.org/10.1016/j.synthmet.2019.116157
- Y. Qin, Y. Zhang, N. Qi, Q. Wang, X. Zhang et al., Preparation of graphene aerogel with high mechanical stability and microwave absorption ability via combining surface support of metallic-CNTs and interfacial cross-linking by magnetic nanoparticles. ACS Appl. Mater. Interfaces 11(10), 10409–10417 (2019). https://doi.org/10.1021/acsami.8b22382
- Y. Zhou, N. Wang, J. Muhammad, D. Wang, Y. Duan et al., Graphene nanoflakes with optimized nitrogen doping fabricated by arc discharge as highly efficient absorbers toward microwave absorption. Carbon 148, 204–213 (2019). https://doi.org/10.1016/j.carbon.2019.03.034
- X. Wang, Y. Lu, T. Zhu, S. Chang, W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 388, 124317 (2020). https://doi.org/10.1016/j.cej.2020.124317
- Y. Cheng, P. Hu, S. Zhou, L. Yan, B. Sun et al., Achieving tunability of effective electromagnetic wave absorption between the whole X-band and Ku-band via adjusting PPy loading in SiC nanowires/graphene hybrid foam. Carbon 132, 430–443 (2018). https://doi.org/10.1016/j.carbon.2018.02.084
- R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal–organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 362, 513–524 (2019). https://doi.org/10.1016/j.cej.2019.01.090
- P. Liu, S. Gao, C. Chen, F. Zhou, Z. Meng et al., Vacancies-engineered and heteroatoms-regulated N-doped porous carbon aerogel for ultrahigh microwave absorption. Carbon 169, 276–287 (2020). https://doi.org/10.1016/j.carbon.2020.07.063
- S. Dong, X. Zhang, X. Li, J. Chen, P. Hu et al., SiC whiskers-reduced graphene oxide composites decorated with MnO nanoparticles for tunable microwave absorption. Chem. Eng. J. 392, 123817 (2020). https://doi.org/10.1016/j.cej.2019.123817
- J. Dong, Y. Lin, H. Zong, H. Yang, L. Wang et al., Three-dimensional architecture reduced graphene oxide–LiFePO4 composite: preparation and excellent microwave absorption performance. Inorg. Chem. 58(3), 2031–2041 (2019). https://doi.org/10.1021/acs.inorgchem.8b03043
- J. Xu, X. Zhang, H. Yuan, S. Zhang, C. Zhu et al., N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption. Carbon 159, 357–365 (2020). https://doi.org/10.1016/j.carbon.2019.12.020
- H. Ji, J. Li, J. Zhang, Y. Yan, Remarkable microwave absorption performance of ultralight graphene–polyethylene glycol composite aerogels with a very low loading ratio of graphene. Compos. Pt. A-Appl. Sci. Manuf. 123, 158–169 (2019). https://doi.org/10.1016/j.compositesa.2019.05.012
- N. Yang, Z.-X. Luo, G.-R. Zhu, S.-C. Chen, X.-L. Wang et al., Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with a hollow skeleton toward superior microwave absorption. ACS Appl. Mater. Interfaces 11(39), 35987–35998 (2019). https://doi.org/10.1021/acsami.9b11101
- Y. Wang, X. Gao, Y. Fu, X. Wu, Q. Wang et al., Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Compos. Pt. B-Eng. 169, 221–228 (2019). https://doi.org/10.1016/j.compositesb.2019.04.008
- D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020). https://doi.org/10.1016/j.carbon.2019.10.056
- X. Meng, Y. Liu, G. Han, W. Yang, Y. Yu, Three-dimensional (Fe3O4/ZnO)@C Double-core@ shell porous nanocomposites with enhanced broadband microwave absorption. Carbon 162, 356–364 (2020). https://doi.org/10.1016/j.carbon.2020.02.035
- J. Tang, N. Liang, L. Wang, J. Li, G. Tian et al., Three-dimensional nitrogen-doped reduced graphene oxide aerogel decorated with Ni nanoparticles with tunable and unique microwave absorption. Carbon 152, 575–586 (2019). https://doi.org/10.1016/j.carbon.2019.06.049
- D. Zhang, Y. Xiong, J. Cheng, J. Chai, T. Liu et al., Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles. Sci. Bull. 65(2), 138–146 (2020). https://doi.org/10.1016/j.scib.2019.10.011
- Z. Jia, B. Wang, A. Feng, J. Liu, M. Zhang et al., Development of spindle-cone shaped of Fe/α-Fe2O3 hybrids and their superior wideband electromagnetic absorption performance. J. Alloys Compd. 799, 216–223 (2019). https://doi.org/10.1016/j.jallcom.2019.05.336
- P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei et al., Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interfaces 9(19), 16404–16416 (2017). https://doi.org/10.1021/acsami.7b02597
- L. Wang, M. Liu, G. Wang, B. Dai, F. Yu et al., An ultralight nitrogen-doped carbon aerogel anchored by Ni–NiO nanoparticles for enhanced microwave adsorption performance. J. Alloys Compd. 776, 43–51 (2019). https://doi.org/10.1016/j.jallcom.2018.10.214
- M. Ma, W. Li, Z. Tong, Y. Yang, Y. Ma et al., 1D flower-like Fe3O4@ SiO2@ MnO2 nanochains inducing RGO self-assembly into aerogels for high-efficient microwave absorption. Mater. Des. 188, 108462 (2020). https://doi.org/10.1016/j.matdes.2019.108462
- Z. Liu, F. Pan, B. Deng, Z. Xiang, W. Lu, Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption. Carbon 174, 59–69 (2021). https://doi.org/10.1016/j.carbon.2020.12.019
- Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018). https://doi.org/10.1016/j.carbon.2018.08.014
- Y. Jiang, Y. Chen, Y.-J. Liu, G.-X. Sui, Lightweight spongy bone-like graphene@ SiC aerogel composites for high-performance microwave absorption. Chem. Eng. J. 337, 522–531 (2018). https://doi.org/10.1016/j.cej.2017.12.131
- Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624 (2019). https://doi.org/10.1002/adfm.201807624
- F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28(17), 1707205 (2018). https://doi.org/10.1002/adfm.201707205
- L. Wang, M. Huang, X. Yu, W. You, J. Zhang et al., MOF-derived Ni1−xCox@ carbon with tunable nano–microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12(1), 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
- L. Wang, B. Wen, H. Yang, Y. Qiu, N. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A-Appl. Sci. Manuf. 135, 105958 (2020). https://doi.org/10.1016/j.compositesa.2020.105958
- H.-B. Zhao, J.-B. Cheng, J.-Y. Zhu, Y.-Z. Wang, Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness. J. Mater. Chem. C 7(2), 441–448 (2019). https://doi.org/10.1039/C8TC05239E
- M. Zhang, H. Ling, S. Ding, Y. Xie, T. Cheng et al., Synthesis of CF@ PANI hybrid nanocomposites decorated with Fe3O4 nanoparticles towards excellent lightweight microwave absorber. Carbon 174, 248–259 (2021). https://doi.org/10.1016/j.carbon.2020.12.005
- Z. Li, H. Lin, S. Ding, H. Ling, T. Wang et al., Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 167, 148–159 (2020). https://doi.org/10.1016/j.carbon.2020.05.070
- H. Zhang, Y. Zhao, X. Yang, G. Zhao, D. Zhang et al., A facile synthesis of novel amorphous TiO2 nanorods decorated rGO hybrid composites with wide band microwave absorption. Nanomaterials 10(11), 2141 (2020). https://doi.org/10.3390/nano10112141
- Y. Zhao, H. Zhang, T. Cong, H. Huang, J. Muhammad et al., Crystallization-and morphology-tunable Fe3O4@C core–shell composites decorated on carbon nanotube skeleton with tailorable electromagnetic wave absorption behavior. Appl. Phys. Express 13(12), 125501 (2020). https://doi.org/10.35848/1882-0786/abc491
- P. Liu, S. Gao, Y. Wang, F. Zhou, Y. Huang et al., Core-shell Ni@ C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon 170, 503–516 (2020). https://doi.org/10.1016/j.carbon.2020.08.043
- P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202102812
- S. Gao, G. Zhang, Y. Wang, X. Han, Y. Huang et al., MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 88, 56–65 (2021). https://doi.org/10.1016/j.jmst.2021.02.011
References
X. Zeng, X. Cheng, R. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168, 606–623 (2020). https://doi.org/10.1016/j.carbon.2020.07.028
D. Zhi, T. Li, J. Li, H. Ren, F. Meng, A review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption. Compos. Pt. B-Eng. 211, 108642 (2021). https://doi.org/10.1016/j.compositesb.2021.108642
Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30(31), 2000475 (2020). https://doi.org/10.1002/adfm.202000475
M. Zhang, C. Han, W.-Q. Cao, M.-S. Cao, H.-J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13(1), 27 (2021). https://doi.org/10.1007/s40820-020-00552-9
G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011). https://doi.org/10.1021/cm103441u
J. Deng, X. Zhang, B. Zhao, Z. Bai, S. Wen et al., Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J. Mater. Chem. C 6(26), 7128–7140 (2018). https://doi.org/10.1039/C8TC02520G
D. Liu, Y. Du, Z. Li, Y. Wang, P. Xu et al., Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties. J. Mater. Chem. C 6(36), 9615–9623 (2018). https://doi.org/10.1039/C8TC02931H
Y. Duan, Z. Xiao, X. Yan, Z. Gao, Y. Tang et al., Enhanced electromagnetic microwave absorption property of peapod-like MnO@ carbon nanowires. ACS Appl. Mater. Interfaces 10(46), 40078–40087 (2018). https://doi.org/10.1021/acsami.8b11395
J. Yang, W. Yang, F. Li, Y. Yang, Research and development of high-performance new microwave absorbers based on rare earth transition metal compounds: a review. J. Magn. Magn. Mater. 497, 165961 (2020). https://doi.org/10.1016/j.jmmm.2019.165961
Y. Cheng, G. Ji, Z. Li, H. Lv, W. Liu, Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: effect of Fe/Co atomic ratio. J. Alloys Compd. 704, 289–295 (2017). https://doi.org/10.1016/j.jallcom.2017.02.024
C. Chen, J. Xi, E. Zhou, L. Peng, Z. Chen et al., Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 10(2), 26 (2018). https://doi.org/10.1007/s40820-017-0179-8
H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245–253 (2019). https://doi.org/10.1016/j.carbon.2018.10.027
P. Liu, C. Zhu, S. Gao, C. Guan, Y. Huang et al., N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon 163, 348–359 (2020). https://doi.org/10.1016/j.carbon.2020.03.041
D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu et al., Rational design of core-shell Co@ C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017). https://doi.org/10.1016/j.carbon.2016.10.059
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@ SiO2@ TiO2 and CoNi@ Air@ TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
X. Wang, T. Zhu, S. Chang, Y. Lu, W. Mi et al., 3D nest-like architecture of core–shell CoFe2O4@ 1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 12(9), 11252–11264 (2020). https://doi.org/10.1021/acsami.9b23489
R. Shu, Y. Wu, W. Li, J. Zhang, Y. Liu et al., Fabrication of ferroferric oxide–carbon/reduced graphene oxide nanocomposites derived from Fe-based metal–organic frameworks for microwave absorption. Compos. Sci. Technol. 196, 108240 (2020). https://doi.org/10.1016/j.compscitech.2020.108240
X. Xu, G. Wang, G. Wan, S. Shi, C. Hao et al., Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption. Chem. Eng. J. 382, 122980 (2020). https://doi.org/10.1016/j.cej.2019.122980
Z. Yang, M. Li, L. Yang, J. Liu, Y. Wang et al., Constructing uniform Fe3O4@ C@ MnO2 microspheres with yolk-shell interior toward enhancement in microwave absorption. J. Alloys Compd. 817, 152795 (2020). https://doi.org/10.1016/j.jallcom.2019.152795
X. Liu, C. Hao, L. He, C. Yang, Y. Chen et al., Yolk–shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 11(8), 4169–4182 (2018). https://doi.org/10.1007/s12274-018-2006-z
P. Liu, S. Gao, X. Liu, Y. Huang, W. He et al., Rational construction of hierarchical hollow CuS@ CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials. Compos. Pt. B-Eng. 192, 107992 (2020). https://doi.org/10.1016/j.compositesb.2020.107992
Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 29(28), 1901448 (2019). https://doi.org/10.1002/adfm.201901448
T. Hou, B. Wang, M. Ma, A. Feng, Z. Huang et al., Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties. Compos. Pt. B-Eng. 180, 107577 (2020). https://doi.org/10.1016/j.compositesb.2019.107577
N. Yang, Z.-X. Luo, S.-C. Chen, G. Wu, Y.-Z. Wang, Fe3O4 nanoparticle/n-doped carbon hierarchically hollow microspheres for broadband and high-performance microwave absorption at an ultralow filler loading. ACS Appl. Mater. Interfaces 12(16), 18952–18963 (2020). https://doi.org/10.1021/acsami.0c04185
Z. Hou, J. Xue, H. Wei, X. Fan, F. Ye et al., Tailorable microwave absorption properties of RGO/SiC/CNT nanocomposites with 3D hierarchical structure. Ceram. Int. 46(11), 18160–18167 (2020). https://doi.org/10.1016/j.ceramint.2020.04.137
L. Liu, N. He, T. Wu, P. Hu, G. Tong, Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem. Eng. J. 355, 103–108 (2019). https://doi.org/10.1016/j.cej.2018.08.131
Y. Zhang, H. Meng, Y. Shi, X. Zhang, C. Liu et al., TiN/Ni/C ternary composites with expanded heterogeneous interfaces for efficient microwave absorption. Compos. Pt. B-Eng. 193, 108028 (2020). https://doi.org/10.1016/j.compositesb.2020.108028
L. Yan, M. Zhang, S. Zhao, T. Sun, B. Zhang et al., Wire-in-tube ZnO@ carbon by molecular layer deposition: accurately tunable electromagnetic parameters and remarkable microwave absorption. Chem. Eng. J. 382, 122860 (2020). https://doi.org/10.1016/j.cej.2019.122860
L. Xing, X. Li, Z. Wu, X. Yu, J. Liu et al., 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 379, 122241 (2020). https://doi.org/10.1016/j.cej.2019.122241
J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@ MXene@ MoS2 core–sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12(1), 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
N. Li, G.-W. Huang, Y.-Q. Li, H.-M. Xiao, Q.-P. Feng et al., Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 9(3), 2973–2983 (2017). https://doi.org/10.1021/acsami.6b13142
S. Zhao, Z. Gao, C. Chen, G. Wang, B. Zhang et al., Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon 98, 196–203 (2016). https://doi.org/10.1016/j.carbon.2015.10.101
M. Zhang, Z. Jiang, X. Lv, X. Zhang, Y. Zhang et al., Microwave absorption performance of reduced graphene oxide with negative imaginary permeability. J. Phys. D-Appl. Phys. 53(2), 02LT01 (2019). https://doi.org/10.1088/1361-6463/ab48a7
C. Zhou, S. Geng, X. Xu, T. Wang, L. Zhang et al., Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108, 234–241 (2016). https://doi.org/10.1016/j.carbon.2016.07.015
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
X. Xu, S. Shi, Y. Tang, G. Wang, M. Zhou et al., Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 8(5), 2002658 (2021). https://doi.org/10.1002/advs.202002658
C. Deng, Y. Sun, L. Pan, T. Wang, Y. Xie et al., Thermal diffusivity of a single carbon nanocoil: uncovering the correlation with temperature and domain size. ACS Nano 10(10), 9710–9719 (2016). https://doi.org/10.1021/acsnano.6b05715
H. Ma, K. Nakata, L. Pan, K. Hirahara, Y. Nakayama, Relationship between the structure of carbon nanocoils and their electrical property. Carbon 73, 71–77 (2014). https://doi.org/10.1016/j.carbon.2014.02.038
Y. Sun, C. Wang, L. Pan, X. Fu, P. Yin et al., Electrical conductivity of single polycrystalline-amorphous carbon nanocoils. Carbon 98, 285–290 (2016). https://doi.org/10.1016/j.carbon.2015.11.025
S. Xu, Z. Fan, S. Yang, Y. Zhao, L. Pan, Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers. Chem. Eng. J. 404, 126064 (2021). https://doi.org/10.1016/j.cej.2020.126064
C. Deng, L. Pan, D. Zhang, C. Li, H. Nasir, A super stretchable and sensitive strain sensor based on a carbon nanocoil network fabricated by a simple peeling-off approach. Nanoscale 9(42), 16404–16411 (2017). https://doi.org/10.1039/C7NR05486F
R. Cui, L. Pan, D. Zhang, H. Nasir, Electromagnetic microwave absorption properties of carbon nanocoils/tissue. Diam. Relat. Mat. 77, 53–56 (2017). https://doi.org/10.1016/j.diamond.2017.05.014
Y. Zhao, H. Zhang, X. Yang, H. Huang, G. Zhao et al., In situ construction of hierarchical core–shell Fe3O4@ C nanoparticles–helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption. Carbon 171, 395–408 (2021). https://doi.org/10.1016/j.carbon.2020.09.036
G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). https://doi.org/10.1021/nn304630h
Y. Zhao, J. Wang, H. Huang, T. Cong, S. Yang et al., Growth of carbon nanocoils by porous α-Fe2O3/SnO2 catalyst and its buckypaper for high efficient adsorption. Nano-Micro Lett. 12(1), 23 (2020). https://doi.org/10.1007/s40820-019-0365-y
Y. Zhao, J. Wang, H. Huang, H. Zhang, T. Cong et al., Catalytic anisotropy induced by multi-particles for growth of carbon nanocoils. Carbon 166, 101–112 (2020). https://doi.org/10.1016/j.carbon.2020.05.007
H. Huang, L. Xia, Y. Zhao, H. Zhang, T. Cong et al., Three-dimensional porous reduced graphene oxide/PEDOT: PSS aerogel: facile preparation and high performance for supercapacitor electrodes. Electrochim. Acta 364, 137297 (2020). https://doi.org/10.1016/j.electacta.2020.137297
H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang et al., Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 142, 346–353 (2019). https://doi.org/10.1016/j.carbon.2018.10.056
R. Shu, J. Zhang, C. Guo, Y. Wu, Z. Wan et al., Facile synthesis of nitrogen-doped reduced graphene oxide/nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band. Chem. Eng. J. 384, 123266 (2020). https://doi.org/10.1016/j.cej.2019.123266
J. Zhang, R. Shu, Y. Wu, Z. Wan, M. Zheng, Facile fabrication and enhanced microwave absorption properties of reduced graphene oxide/tin dioxide binary nanocomposites in the X-band. Synth. Met. 257, 116157 (2019). https://doi.org/10.1016/j.synthmet.2019.116157
Y. Qin, Y. Zhang, N. Qi, Q. Wang, X. Zhang et al., Preparation of graphene aerogel with high mechanical stability and microwave absorption ability via combining surface support of metallic-CNTs and interfacial cross-linking by magnetic nanoparticles. ACS Appl. Mater. Interfaces 11(10), 10409–10417 (2019). https://doi.org/10.1021/acsami.8b22382
Y. Zhou, N. Wang, J. Muhammad, D. Wang, Y. Duan et al., Graphene nanoflakes with optimized nitrogen doping fabricated by arc discharge as highly efficient absorbers toward microwave absorption. Carbon 148, 204–213 (2019). https://doi.org/10.1016/j.carbon.2019.03.034
X. Wang, Y. Lu, T. Zhu, S. Chang, W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 388, 124317 (2020). https://doi.org/10.1016/j.cej.2020.124317
Y. Cheng, P. Hu, S. Zhou, L. Yan, B. Sun et al., Achieving tunability of effective electromagnetic wave absorption between the whole X-band and Ku-band via adjusting PPy loading in SiC nanowires/graphene hybrid foam. Carbon 132, 430–443 (2018). https://doi.org/10.1016/j.carbon.2018.02.084
R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal–organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 362, 513–524 (2019). https://doi.org/10.1016/j.cej.2019.01.090
P. Liu, S. Gao, C. Chen, F. Zhou, Z. Meng et al., Vacancies-engineered and heteroatoms-regulated N-doped porous carbon aerogel for ultrahigh microwave absorption. Carbon 169, 276–287 (2020). https://doi.org/10.1016/j.carbon.2020.07.063
S. Dong, X. Zhang, X. Li, J. Chen, P. Hu et al., SiC whiskers-reduced graphene oxide composites decorated with MnO nanoparticles for tunable microwave absorption. Chem. Eng. J. 392, 123817 (2020). https://doi.org/10.1016/j.cej.2019.123817
J. Dong, Y. Lin, H. Zong, H. Yang, L. Wang et al., Three-dimensional architecture reduced graphene oxide–LiFePO4 composite: preparation and excellent microwave absorption performance. Inorg. Chem. 58(3), 2031–2041 (2019). https://doi.org/10.1021/acs.inorgchem.8b03043
J. Xu, X. Zhang, H. Yuan, S. Zhang, C. Zhu et al., N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption. Carbon 159, 357–365 (2020). https://doi.org/10.1016/j.carbon.2019.12.020
H. Ji, J. Li, J. Zhang, Y. Yan, Remarkable microwave absorption performance of ultralight graphene–polyethylene glycol composite aerogels with a very low loading ratio of graphene. Compos. Pt. A-Appl. Sci. Manuf. 123, 158–169 (2019). https://doi.org/10.1016/j.compositesa.2019.05.012
N. Yang, Z.-X. Luo, G.-R. Zhu, S.-C. Chen, X.-L. Wang et al., Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with a hollow skeleton toward superior microwave absorption. ACS Appl. Mater. Interfaces 11(39), 35987–35998 (2019). https://doi.org/10.1021/acsami.9b11101
Y. Wang, X. Gao, Y. Fu, X. Wu, Q. Wang et al., Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Compos. Pt. B-Eng. 169, 221–228 (2019). https://doi.org/10.1016/j.compositesb.2019.04.008
D. Liu, Y. Du, F. Wang, Y. Wang, L. Cui et al., MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157, 478–485 (2020). https://doi.org/10.1016/j.carbon.2019.10.056
X. Meng, Y. Liu, G. Han, W. Yang, Y. Yu, Three-dimensional (Fe3O4/ZnO)@C Double-core@ shell porous nanocomposites with enhanced broadband microwave absorption. Carbon 162, 356–364 (2020). https://doi.org/10.1016/j.carbon.2020.02.035
J. Tang, N. Liang, L. Wang, J. Li, G. Tian et al., Three-dimensional nitrogen-doped reduced graphene oxide aerogel decorated with Ni nanoparticles with tunable and unique microwave absorption. Carbon 152, 575–586 (2019). https://doi.org/10.1016/j.carbon.2019.06.049
D. Zhang, Y. Xiong, J. Cheng, J. Chai, T. Liu et al., Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles. Sci. Bull. 65(2), 138–146 (2020). https://doi.org/10.1016/j.scib.2019.10.011
Z. Jia, B. Wang, A. Feng, J. Liu, M. Zhang et al., Development of spindle-cone shaped of Fe/α-Fe2O3 hybrids and their superior wideband electromagnetic absorption performance. J. Alloys Compd. 799, 216–223 (2019). https://doi.org/10.1016/j.jallcom.2019.05.336
P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei et al., Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interfaces 9(19), 16404–16416 (2017). https://doi.org/10.1021/acsami.7b02597
L. Wang, M. Liu, G. Wang, B. Dai, F. Yu et al., An ultralight nitrogen-doped carbon aerogel anchored by Ni–NiO nanoparticles for enhanced microwave adsorption performance. J. Alloys Compd. 776, 43–51 (2019). https://doi.org/10.1016/j.jallcom.2018.10.214
M. Ma, W. Li, Z. Tong, Y. Yang, Y. Ma et al., 1D flower-like Fe3O4@ SiO2@ MnO2 nanochains inducing RGO self-assembly into aerogels for high-efficient microwave absorption. Mater. Des. 188, 108462 (2020). https://doi.org/10.1016/j.matdes.2019.108462
Z. Liu, F. Pan, B. Deng, Z. Xiang, W. Lu, Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption. Carbon 174, 59–69 (2021). https://doi.org/10.1016/j.carbon.2020.12.019
Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018). https://doi.org/10.1016/j.carbon.2018.08.014
Y. Jiang, Y. Chen, Y.-J. Liu, G.-X. Sui, Lightweight spongy bone-like graphene@ SiC aerogel composites for high-performance microwave absorption. Chem. Eng. J. 337, 522–531 (2018). https://doi.org/10.1016/j.cej.2017.12.131
Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624 (2019). https://doi.org/10.1002/adfm.201807624
F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28(17), 1707205 (2018). https://doi.org/10.1002/adfm.201707205
L. Wang, M. Huang, X. Yu, W. You, J. Zhang et al., MOF-derived Ni1−xCox@ carbon with tunable nano–microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12(1), 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
L. Wang, B. Wen, H. Yang, Y. Qiu, N. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A-Appl. Sci. Manuf. 135, 105958 (2020). https://doi.org/10.1016/j.compositesa.2020.105958
H.-B. Zhao, J.-B. Cheng, J.-Y. Zhu, Y.-Z. Wang, Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness. J. Mater. Chem. C 7(2), 441–448 (2019). https://doi.org/10.1039/C8TC05239E
M. Zhang, H. Ling, S. Ding, Y. Xie, T. Cheng et al., Synthesis of CF@ PANI hybrid nanocomposites decorated with Fe3O4 nanoparticles towards excellent lightweight microwave absorber. Carbon 174, 248–259 (2021). https://doi.org/10.1016/j.carbon.2020.12.005
Z. Li, H. Lin, S. Ding, H. Ling, T. Wang et al., Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 167, 148–159 (2020). https://doi.org/10.1016/j.carbon.2020.05.070
H. Zhang, Y. Zhao, X. Yang, G. Zhao, D. Zhang et al., A facile synthesis of novel amorphous TiO2 nanorods decorated rGO hybrid composites with wide band microwave absorption. Nanomaterials 10(11), 2141 (2020). https://doi.org/10.3390/nano10112141
Y. Zhao, H. Zhang, T. Cong, H. Huang, J. Muhammad et al., Crystallization-and morphology-tunable Fe3O4@C core–shell composites decorated on carbon nanotube skeleton with tailorable electromagnetic wave absorption behavior. Appl. Phys. Express 13(12), 125501 (2020). https://doi.org/10.35848/1882-0786/abc491
P. Liu, S. Gao, Y. Wang, F. Zhou, Y. Huang et al., Core-shell Ni@ C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon 170, 503–516 (2020). https://doi.org/10.1016/j.carbon.2020.08.043
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202102812
S. Gao, G. Zhang, Y. Wang, X. Han, Y. Huang et al., MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 88, 56–65 (2021). https://doi.org/10.1016/j.jmst.2021.02.011