TiN Paper for Ultrafast-Charging Supercapacitors
Corresponding Author: Yat Li
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 3
Abstract
Ultrafast-charging energy storage devices are attractive for powering personal electronics and electric vehicles. Most ultrafast-charging devices are made of carbonaceous materials such as chemically converted graphene and carbon nanotubes. Yet, their relatively low electrical conductivity may restrict their performance at ultrahigh charging rate. Here, we report the fabrication of a porous titanium nitride (TiN) paper as an alternative electrode material for ultrafast-charging devices. The TiN paper shows an excellent conductivity of 3.67 × 104 S m−1, which is considerably higher than most carbon-based electrodes. The paper-like structure also contains a combination of large pores between interconnected nanobelts and mesopores within the nanobelts. This unique electrode enables fast charging by simultaneously providing efficient ion diffusion and electron transport. The supercapacitors (SCs) made of TiN paper enable charging/discharging at an ultrahigh scan rate of 100 V s−1 in a wide voltage window of 1.5 V in Na2SO4 neutral electrolyte. It has an outstanding response time with a characteristic time constant of 4 ms. Significantly, the TiN paper-based SCs also show zero capacitance loss after 200,000 cycles, which is much better than the stability performance reported for other metal nitride SCs. Furthermore, the device shows great promise in scalability. The filtration method enables good control of the thickness and mass loading of TiN electrodes and devices.
Highlights
1 The superior conductivity and unique porous electrode structure in the TiN paper enable fast charging by simultaneously providing efficient ion diffusion and electron transport.
2 The TiN paper-based supercapacitors exhibit charging/discharging at an ultrahigh scan rate of 100 V s−1 in a wide voltage window of 1.5 V in Na2SO4 neutral electrolyte and show zero capacitance loss after 200,000 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert, V. Ozolins, B. Dunn, Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 16, 454–460 (2017). https://doi.org/10.1038/nmat4810
- N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12, 7–15 (2017). https://doi.org/10.1038/nnano.2016.196
- D. Feng, T. Lei, M. Lukatskaya, J. Park, Z. Huang et al., Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018). https://doi.org/10.1038/s41560-017-0044-5
- Y. Huang, Z. Tang, Z. Liu, J. Wei, H. Hu, C. Zhi, Toward enhancing wearability and fashion of wearable supercapacitor with modified polyurethane artificial leather electrolyte. Nano-Micro Lett. 10, 38 (2018). https://doi.org/10.1007/s40820-018-0191-7
- H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee et al., Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017). https://doi.org/10.1126/science.aam5852
- V. Augustyn, J. Come, M. Lowe, J. Kim, P. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601
- B. Yao, J. Zhang, T. Kou, Y. Song, T. Liu, Y. Li, Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4, 1700107 (2017). https://doi.org/10.1002/advs.201700107
- M.H. Yu, X.L. Feng, Thin-film electrode-based supercapacitors. Joule 3, 338–360 (2019). https://doi.org/10.1016/j.joule.2018.12.012
- L. Yuan, B. Yao, B. Hu, K. Huo, W. Chen, J. Zhou, Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ. Sci. 6, 470–476 (2013). https://doi.org/10.1039/c2ee23977a
- V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014). https://doi.org/10.1039/c3ee44164d
- Y. Song, T. Liu, B. Yao, M. Li, T. Kou et al., Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2, 1752–1759 (2017). https://doi.org/10.1021/acsenergylett.7000405
- M. Zhang, Q. Zhou, J. Chen, X. Yu, L. Huang, Y. Li, C. Li, G. Shi, An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering. Energy Environ. Sci. 9, 2005–2010 (2016). https://doi.org/10.1039/C6EE00615A
- N. Kurra, M.K. Hota, H.N. Alshareef, Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy 13, 500–508 (2015). https://doi.org/10.1016/j.nanoen.2015.03.018
- J.A. Lee, M.K. Shin, S.H. Kim, H.U. Cho, G.M. Spinks et al., Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat. Commun. 4, 1970 (2013). https://doi.org/10.1038/ncomms2970
- D.T. Pham, T.H. Lee, D.H. Luong, F. Yao, A. Ghosh et al., Carbon nanotube-bridged graphene 3d building blocks for ultrafast compact supercapacitors. ACS Nano 9, 2018–2027 (2015). https://doi.org/10.1021/nn507079x
- G.H. Lee, J.W. Lee, J.I. Choi, S.J. Kim, Y.H. Kim, J.K. Kang, Ultrafast discharge/charge rate and robust cycle life for high-performance energy storage using ultrafine nanocrystals on the binder-free porous graphene foam. Adv. Funct. Mater. 26, 5139–5148 (2016). https://doi.org/10.1002/adfm.201601355
- Z.S. Wu, Z. Liu, K. Parvez, X. Feng, K. Mullen, Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv. Mater. 27, 3669–3675 (2015). https://doi.org/10.1002/adma.201501208
- J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng et al., 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13, 72–78 (2013). https://doi.org/10.1021/nl3034976
- R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes–the route toward applications. Science 297, 787–792 (2002). https://doi.org/10.1126/science.1060928
- Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011). https://doi.org/10.1126/science.1200770
- C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang et al., All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 27, 4566–4571 (2015). https://doi.org/10.1002/adma.201501838
- X. Lu, G. Wang, T. Zhai, M. Yu, S. Xie et al., Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett. 12, 5376–5381 (2012). https://doi.org/10.1021/nl302761z
- M.-S. Balogun, W. Qiu, W. Wang, P. Fang, X. Lu, Y. Tong, Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J. Mater. Chem. A 3, 1364–1387 (2015). https://doi.org/10.1039/C4TA05565A
- X. Lu, T. Liu, T. Zhai, G. Wang, M. Yu et al., Improving the cycling stability of metal–nitride supercapacitor electrodes with a thin carbon shell. Adv. Energy Mater. 4, 1300994 (2014). https://doi.org/10.1002/aenm.201300994
- G. Hasegawa, A. Kitada, S. Kawasaki, K. Kanamori, K. Nakanishi et al., Impact of electrolyte on pseudocapacitance and stability of porous titanium nitride (TiN) monolithic electrode. J. Electrochem. Soc. 162, A77–A85 (2015). https://doi.org/10.1149/2.0491501jes
- B. Yao, L. Huang, J. Zhang, X. Gao, J. Wu et al., Flexible transparent molybdenum trioxide nanopaper for energy storage. Adv. Mater. 28, 6353–6358 (2016). https://doi.org/10.1002/adma.201600529
- F. Zhang, T. Liu, M. Li, M. Yu, Y. Luo, Y. Tong, Y. Li, Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17, 3097–3104 (2017). https://doi.org/10.1021/acs.nanolett.7b00533
- M. Zukalova, J. Prochazka, Z. Bastl, J. Duchoslav, L. Rubacek, D. Havlicek, L. Kavan, Facile conversion of electrospun TiO2 into titanium nitride/oxynitride fibers. Chem. Mater. 22, 4045–4055 (2010). https://doi.org/10.1021/cm100877h
- H.-C. Park, K.-H. Lee, Y.-W. Lee, S.-J. Kim, D.-M. Kim, M.-C. Kim, K.-W. Park, Mesoporous molybdenum nitride nanobelts as an anode with improved electrochemical properties in lithium ion batteries. J. Power Sources 269, 534–541 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.009
- L. Yan, G. Chen, S. Tan, M. Zhou, G. Zou et al., Titanium oxynitride nanoparticles anchored on carbon nanotubes as energy storage materials. ACS Appl. Mater. Interfaces 7, 24212–24217 (2015). https://doi.org/10.1021/acsami.5b07630
- Z. Zhang, J.B.M. Goodall, D.J. Morgan, S. Brown, R.J.H. Clark et al., Photocatalytic activities of N-doped nano-titanias and titanium nitride. J. Eur. Ceram. Soc. 29, 2343–2353 (2009). https://doi.org/10.1016/0010-938X(93)90165-D
- M. Harb, P. Sautet, P. Raybaud, Origin of the enhanced visible-light absorption in n-doped bulk anatase TiO2 from first-principles calculations. J. Phys. Chem. C 115, 19394–19404 (2011). https://doi.org/10.1021/jp204059q
- P. Yang, D. Chao, C. Zhu, X. Xia, Y. Zhang et al., Ultrafast-charging supercapacitors based on corn-like titanium nitride nanostructures. Adv. Sci. 3, 1500299 (2016). https://doi.org/10.1002/advs.201500299
- S. Oktay, Z. Kahraman, M. Urgen, K. Kazmanli, XPS investigations of tribolayers formed on TiN and (Ti, Re)N coatings. Appl. Surf. Sci. 328, 255–261 (2015). https://doi.org/10.1016/j.apsusc.2014.12.023
- R. Chandrasekaran, Y. Soneda, J. Yamashita, M. Kodama, H. Hatori, Preparation and electrochemical performance of activated carbon thin films with polyethylene oxide-salt addition for electrochemical capacitor applications. J. Solid State Electrochem. 12, 1349–1355 (2008). https://doi.org/10.1007/s10008-008-0559-6
- Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss, Y. Huang, X. Duan, Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014). https://doi.org/10.1038/ncomms5554
- L. Huang, B. Yao, J. Sun, X. Gao, J. Wu et al., Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode. J. Mater. Chem. A 5, 2897–2903 (2017). https://doi.org/10.1039/C6TA10433A
- K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). https://doi.org/10.1038/nature07719
- U.N. Maiti, J. Lim, K.E. Lee, W.J. Lee, S.O. Kim, Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv. Mater. 26, 615–619 (2014). https://doi.org/10.1002/adma.201303503
- L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, Y. Cui, Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. USA 106, 21490–21494 (2009). https://doi.org/10.1073/pnas.0908858106
- L. Yuan, X. Xiao, T. Ding, J. Zhong, X. Zhang, Y. Shen et al., Paper-based supercapacitors for self-powered nanosystems. Angew. Chem. Int. Ed. 51, 4934–4938 (2012). https://doi.org/10.1002/anie.201109142
- Z. Li, G. Ma, R. Ge, F. Qin, X. Dong et al., Free-standing conducting polymer films for high-performance energy devices. Angew. Chem. Int. Ed. 55, 979–982 (2016). https://doi.org/10.1002/anie.201509033
- T. Zheng, M.H. Tahmasebi, B. Li, Y. Li, S. Ran et al., Sputtered titanium nitride films on titanium foam substrates as electrodes for high-power electrochemical capacitors. ChemElectroChem 5, 2199–2207 (2018). https://doi.org/10.1002/celc.201800467
- F. Grote, H. Zhao, Y. Lei, Self-supported carbon coated TiN nanotube arrays: innovative carbon coating leads to an improved cycling ability for supercapacitor applications. J. Mater. Chem. A 3, 3465–3470 (2015). https://doi.org/10.1039/C4TA05905K
- P. Sun, R. Lin, Z. Wang, M. Qiu, Z. Chai et al., Rational design of carbon shell endows TiN@C nanotube based fiber supercapacitors with significantly enhanced mechanical stability and electrochemical performance. Nano Energy 31, 432–440 (2017). https://doi.org/10.1016/j.nanoen.2016.11.052
- E. Kao, C. Yang, R. Warren, A. Kozinda, L. Lin, ALD titanium nitride on vertically aligned carbon nanotube forests for electrochemical supercapacitors. Sens. Actuators A-Phys. 240, 160–166 (2016). https://doi.org/10.1016/j.sna.2016.01.044
- L. Demarconnay, E. Raymundo-Piñero, F. Béguin, A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem. Commun. 12, 1275–1278 (2010). https://doi.org/10.1016/j.elecom.2010.06.036
- Q. Gao, L. Demarconnay, E. Raymundo-Pinero, F. Beguin, Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ. Sci. 5, 9611–9617 (2012). https://doi.org/10.1039/c2ee22284a
- T. Lin, I. Chen, F. Liu, C. Yang, H. Bi, F. Xu, F. Huang, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015). https://doi.org/10.1126/science.aab3798
- K. Fic, G. Lota, M. Meller, E. Frackowiak, Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 5, 5842–5850 (2012). https://doi.org/10.1039/c1ee02262h
- H. Cui, G. Zhu, X. Liu, F. Liu, Y. Xie et al., Niobium nitride Nb4N5 as a new high-performance electrode material for supercapacitors. Adv. Sci. 2, 1500126 (2015). https://doi.org/10.1002/advs.201500126
- B. Gao, X. Xiao, J. Su, X. Zhang, X. Peng, J. Fu, P.K. Chu, Synthesis of mesoporous niobium nitride nanobelt arrays and their capacitive properties. Appl. Surf. Sci. 383, 57–63 (2016). https://doi.org/10.1016/j.apsusc.2016.04.173
- X. Lu, M. Yu, T. Zhai, G. Wang, S. Xie et al., High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett. 13, 2628–2633 (2013). https://doi.org/10.1021/nl400760a
- Y. Liu, R. Xiao, Y. Qiu, Y. Fang, P. Zhang, Flexible advanced asymmetric supercapacitors based on titanium nitride-based nanowire electrodes. Electrochim. Acta 213, 393–399 (2016). https://doi.org/10.1016/j.electacta.2016.06.166
- P. Xu, T. Gu, Z. Cao, B. Wei, J. Yu et al., Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater. 4, 1300759–1300764 (2014). https://doi.org/10.1002/aenm.201300759
- W. Bao, A.K. Mondal, J. Xu, C. Wang, D. Su, G. Wang, 3D hybrid–porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors. J. Power Sources 325, 286–291 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.037
- V. Presser, L. Zhang, J.J. Niu, J. McDonough, C. Perez, H. Fong, Y. Gogotsi, Flexible nano-felts of carbide-derived carbon with ultra-high power handling capability. Adv. Energy Mater. 1, 423–430 (2011). https://doi.org/10.1002/aenm.201100047
- M. El-Kady, V. Strong, S. Dubin, R. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012). https://doi.org/10.1126/science.1216744
- D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010). https://doi.org/10.1038/nnano.2010.162
- T. Liu, Z. Zhou, Y. Guo, D. Guo, G. Liu, Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nat. Commun. 10, 675 (2019). https://doi.org/10.1038/s41467-019-08644-w
- X. Xiao, X. Peng, H. Jin, T. Li, C. Zhang et al., Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv. Mater. 25, 5091–5097 (2013). https://doi.org/10.1002/adma.201301465
- Y. Xie, Y. Wang, H. Du, Electrochemical capacitance performance of titanium nitride nanoarray. Mater. Sci. Eng. B 178, 1443–1451 (2013). https://doi.org/10.1016/j.mseb.2013.09.005
- C.F. Windisch, J.W. Virden, S.H. Elder, J. Liu, M.H. Engelhard, Electrochemistry of TiN in 6 M KOH Solution. J. Electrochem. Soc. 145, 1211–1218 (1998). https://doi.org/10.1149/1.1838441
- S.D. Chyou, H.C. Shih, T.T. Chen, On the corrosion characterization of titanium nitride in sulfuric acid solution. Corros. Sci. 35, 337–347 (1993). https://doi.org/10.1016/0010-938X(93)90165-D
- G.Q. Ma, Z. Wang, B. Gao, T.P. Ding, Q.Z. Zhong et al., Multilayered paper-like electrodes composed of alternating stacked mesoporous Mo2N nanobelts and reduced graphene oxide for flexible all-solid-state supercapacitors. J. Mater. Chem. A 3, 14617–14624 (2015). https://doi.org/10.1039/c5ta02851e
References
H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert, V. Ozolins, B. Dunn, Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 16, 454–460 (2017). https://doi.org/10.1038/nmat4810
N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12, 7–15 (2017). https://doi.org/10.1038/nnano.2016.196
D. Feng, T. Lei, M. Lukatskaya, J. Park, Z. Huang et al., Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018). https://doi.org/10.1038/s41560-017-0044-5
Y. Huang, Z. Tang, Z. Liu, J. Wei, H. Hu, C. Zhi, Toward enhancing wearability and fashion of wearable supercapacitor with modified polyurethane artificial leather electrolyte. Nano-Micro Lett. 10, 38 (2018). https://doi.org/10.1007/s40820-018-0191-7
H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee et al., Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017). https://doi.org/10.1126/science.aam5852
V. Augustyn, J. Come, M. Lowe, J. Kim, P. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601
B. Yao, J. Zhang, T. Kou, Y. Song, T. Liu, Y. Li, Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4, 1700107 (2017). https://doi.org/10.1002/advs.201700107
M.H. Yu, X.L. Feng, Thin-film electrode-based supercapacitors. Joule 3, 338–360 (2019). https://doi.org/10.1016/j.joule.2018.12.012
L. Yuan, B. Yao, B. Hu, K. Huo, W. Chen, J. Zhou, Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ. Sci. 6, 470–476 (2013). https://doi.org/10.1039/c2ee23977a
V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014). https://doi.org/10.1039/c3ee44164d
Y. Song, T. Liu, B. Yao, M. Li, T. Kou et al., Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2, 1752–1759 (2017). https://doi.org/10.1021/acsenergylett.7000405
M. Zhang, Q. Zhou, J. Chen, X. Yu, L. Huang, Y. Li, C. Li, G. Shi, An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering. Energy Environ. Sci. 9, 2005–2010 (2016). https://doi.org/10.1039/C6EE00615A
N. Kurra, M.K. Hota, H.N. Alshareef, Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy 13, 500–508 (2015). https://doi.org/10.1016/j.nanoen.2015.03.018
J.A. Lee, M.K. Shin, S.H. Kim, H.U. Cho, G.M. Spinks et al., Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat. Commun. 4, 1970 (2013). https://doi.org/10.1038/ncomms2970
D.T. Pham, T.H. Lee, D.H. Luong, F. Yao, A. Ghosh et al., Carbon nanotube-bridged graphene 3d building blocks for ultrafast compact supercapacitors. ACS Nano 9, 2018–2027 (2015). https://doi.org/10.1021/nn507079x
G.H. Lee, J.W. Lee, J.I. Choi, S.J. Kim, Y.H. Kim, J.K. Kang, Ultrafast discharge/charge rate and robust cycle life for high-performance energy storage using ultrafine nanocrystals on the binder-free porous graphene foam. Adv. Funct. Mater. 26, 5139–5148 (2016). https://doi.org/10.1002/adfm.201601355
Z.S. Wu, Z. Liu, K. Parvez, X. Feng, K. Mullen, Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv. Mater. 27, 3669–3675 (2015). https://doi.org/10.1002/adma.201501208
J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng et al., 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13, 72–78 (2013). https://doi.org/10.1021/nl3034976
R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes–the route toward applications. Science 297, 787–792 (2002). https://doi.org/10.1126/science.1060928
Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011). https://doi.org/10.1126/science.1200770
C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang et al., All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 27, 4566–4571 (2015). https://doi.org/10.1002/adma.201501838
X. Lu, G. Wang, T. Zhai, M. Yu, S. Xie et al., Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett. 12, 5376–5381 (2012). https://doi.org/10.1021/nl302761z
M.-S. Balogun, W. Qiu, W. Wang, P. Fang, X. Lu, Y. Tong, Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J. Mater. Chem. A 3, 1364–1387 (2015). https://doi.org/10.1039/C4TA05565A
X. Lu, T. Liu, T. Zhai, G. Wang, M. Yu et al., Improving the cycling stability of metal–nitride supercapacitor electrodes with a thin carbon shell. Adv. Energy Mater. 4, 1300994 (2014). https://doi.org/10.1002/aenm.201300994
G. Hasegawa, A. Kitada, S. Kawasaki, K. Kanamori, K. Nakanishi et al., Impact of electrolyte on pseudocapacitance and stability of porous titanium nitride (TiN) monolithic electrode. J. Electrochem. Soc. 162, A77–A85 (2015). https://doi.org/10.1149/2.0491501jes
B. Yao, L. Huang, J. Zhang, X. Gao, J. Wu et al., Flexible transparent molybdenum trioxide nanopaper for energy storage. Adv. Mater. 28, 6353–6358 (2016). https://doi.org/10.1002/adma.201600529
F. Zhang, T. Liu, M. Li, M. Yu, Y. Luo, Y. Tong, Y. Li, Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17, 3097–3104 (2017). https://doi.org/10.1021/acs.nanolett.7b00533
M. Zukalova, J. Prochazka, Z. Bastl, J. Duchoslav, L. Rubacek, D. Havlicek, L. Kavan, Facile conversion of electrospun TiO2 into titanium nitride/oxynitride fibers. Chem. Mater. 22, 4045–4055 (2010). https://doi.org/10.1021/cm100877h
H.-C. Park, K.-H. Lee, Y.-W. Lee, S.-J. Kim, D.-M. Kim, M.-C. Kim, K.-W. Park, Mesoporous molybdenum nitride nanobelts as an anode with improved electrochemical properties in lithium ion batteries. J. Power Sources 269, 534–541 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.009
L. Yan, G. Chen, S. Tan, M. Zhou, G. Zou et al., Titanium oxynitride nanoparticles anchored on carbon nanotubes as energy storage materials. ACS Appl. Mater. Interfaces 7, 24212–24217 (2015). https://doi.org/10.1021/acsami.5b07630
Z. Zhang, J.B.M. Goodall, D.J. Morgan, S. Brown, R.J.H. Clark et al., Photocatalytic activities of N-doped nano-titanias and titanium nitride. J. Eur. Ceram. Soc. 29, 2343–2353 (2009). https://doi.org/10.1016/0010-938X(93)90165-D
M. Harb, P. Sautet, P. Raybaud, Origin of the enhanced visible-light absorption in n-doped bulk anatase TiO2 from first-principles calculations. J. Phys. Chem. C 115, 19394–19404 (2011). https://doi.org/10.1021/jp204059q
P. Yang, D. Chao, C. Zhu, X. Xia, Y. Zhang et al., Ultrafast-charging supercapacitors based on corn-like titanium nitride nanostructures. Adv. Sci. 3, 1500299 (2016). https://doi.org/10.1002/advs.201500299
S. Oktay, Z. Kahraman, M. Urgen, K. Kazmanli, XPS investigations of tribolayers formed on TiN and (Ti, Re)N coatings. Appl. Surf. Sci. 328, 255–261 (2015). https://doi.org/10.1016/j.apsusc.2014.12.023
R. Chandrasekaran, Y. Soneda, J. Yamashita, M. Kodama, H. Hatori, Preparation and electrochemical performance of activated carbon thin films with polyethylene oxide-salt addition for electrochemical capacitor applications. J. Solid State Electrochem. 12, 1349–1355 (2008). https://doi.org/10.1007/s10008-008-0559-6
Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss, Y. Huang, X. Duan, Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014). https://doi.org/10.1038/ncomms5554
L. Huang, B. Yao, J. Sun, X. Gao, J. Wu et al., Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode. J. Mater. Chem. A 5, 2897–2903 (2017). https://doi.org/10.1039/C6TA10433A
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). https://doi.org/10.1038/nature07719
U.N. Maiti, J. Lim, K.E. Lee, W.J. Lee, S.O. Kim, Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv. Mater. 26, 615–619 (2014). https://doi.org/10.1002/adma.201303503
L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, Y. Cui, Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. USA 106, 21490–21494 (2009). https://doi.org/10.1073/pnas.0908858106
L. Yuan, X. Xiao, T. Ding, J. Zhong, X. Zhang, Y. Shen et al., Paper-based supercapacitors for self-powered nanosystems. Angew. Chem. Int. Ed. 51, 4934–4938 (2012). https://doi.org/10.1002/anie.201109142
Z. Li, G. Ma, R. Ge, F. Qin, X. Dong et al., Free-standing conducting polymer films for high-performance energy devices. Angew. Chem. Int. Ed. 55, 979–982 (2016). https://doi.org/10.1002/anie.201509033
T. Zheng, M.H. Tahmasebi, B. Li, Y. Li, S. Ran et al., Sputtered titanium nitride films on titanium foam substrates as electrodes for high-power electrochemical capacitors. ChemElectroChem 5, 2199–2207 (2018). https://doi.org/10.1002/celc.201800467
F. Grote, H. Zhao, Y. Lei, Self-supported carbon coated TiN nanotube arrays: innovative carbon coating leads to an improved cycling ability for supercapacitor applications. J. Mater. Chem. A 3, 3465–3470 (2015). https://doi.org/10.1039/C4TA05905K
P. Sun, R. Lin, Z. Wang, M. Qiu, Z. Chai et al., Rational design of carbon shell endows TiN@C nanotube based fiber supercapacitors with significantly enhanced mechanical stability and electrochemical performance. Nano Energy 31, 432–440 (2017). https://doi.org/10.1016/j.nanoen.2016.11.052
E. Kao, C. Yang, R. Warren, A. Kozinda, L. Lin, ALD titanium nitride on vertically aligned carbon nanotube forests for electrochemical supercapacitors. Sens. Actuators A-Phys. 240, 160–166 (2016). https://doi.org/10.1016/j.sna.2016.01.044
L. Demarconnay, E. Raymundo-Piñero, F. Béguin, A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem. Commun. 12, 1275–1278 (2010). https://doi.org/10.1016/j.elecom.2010.06.036
Q. Gao, L. Demarconnay, E. Raymundo-Pinero, F. Beguin, Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ. Sci. 5, 9611–9617 (2012). https://doi.org/10.1039/c2ee22284a
T. Lin, I. Chen, F. Liu, C. Yang, H. Bi, F. Xu, F. Huang, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015). https://doi.org/10.1126/science.aab3798
K. Fic, G. Lota, M. Meller, E. Frackowiak, Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 5, 5842–5850 (2012). https://doi.org/10.1039/c1ee02262h
H. Cui, G. Zhu, X. Liu, F. Liu, Y. Xie et al., Niobium nitride Nb4N5 as a new high-performance electrode material for supercapacitors. Adv. Sci. 2, 1500126 (2015). https://doi.org/10.1002/advs.201500126
B. Gao, X. Xiao, J. Su, X. Zhang, X. Peng, J. Fu, P.K. Chu, Synthesis of mesoporous niobium nitride nanobelt arrays and their capacitive properties. Appl. Surf. Sci. 383, 57–63 (2016). https://doi.org/10.1016/j.apsusc.2016.04.173
X. Lu, M. Yu, T. Zhai, G. Wang, S. Xie et al., High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett. 13, 2628–2633 (2013). https://doi.org/10.1021/nl400760a
Y. Liu, R. Xiao, Y. Qiu, Y. Fang, P. Zhang, Flexible advanced asymmetric supercapacitors based on titanium nitride-based nanowire electrodes. Electrochim. Acta 213, 393–399 (2016). https://doi.org/10.1016/j.electacta.2016.06.166
P. Xu, T. Gu, Z. Cao, B. Wei, J. Yu et al., Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater. 4, 1300759–1300764 (2014). https://doi.org/10.1002/aenm.201300759
W. Bao, A.K. Mondal, J. Xu, C. Wang, D. Su, G. Wang, 3D hybrid–porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors. J. Power Sources 325, 286–291 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.037
V. Presser, L. Zhang, J.J. Niu, J. McDonough, C. Perez, H. Fong, Y. Gogotsi, Flexible nano-felts of carbide-derived carbon with ultra-high power handling capability. Adv. Energy Mater. 1, 423–430 (2011). https://doi.org/10.1002/aenm.201100047
M. El-Kady, V. Strong, S. Dubin, R. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012). https://doi.org/10.1126/science.1216744
D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010). https://doi.org/10.1038/nnano.2010.162
T. Liu, Z. Zhou, Y. Guo, D. Guo, G. Liu, Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nat. Commun. 10, 675 (2019). https://doi.org/10.1038/s41467-019-08644-w
X. Xiao, X. Peng, H. Jin, T. Li, C. Zhang et al., Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv. Mater. 25, 5091–5097 (2013). https://doi.org/10.1002/adma.201301465
Y. Xie, Y. Wang, H. Du, Electrochemical capacitance performance of titanium nitride nanoarray. Mater. Sci. Eng. B 178, 1443–1451 (2013). https://doi.org/10.1016/j.mseb.2013.09.005
C.F. Windisch, J.W. Virden, S.H. Elder, J. Liu, M.H. Engelhard, Electrochemistry of TiN in 6 M KOH Solution. J. Electrochem. Soc. 145, 1211–1218 (1998). https://doi.org/10.1149/1.1838441
S.D. Chyou, H.C. Shih, T.T. Chen, On the corrosion characterization of titanium nitride in sulfuric acid solution. Corros. Sci. 35, 337–347 (1993). https://doi.org/10.1016/0010-938X(93)90165-D
G.Q. Ma, Z. Wang, B. Gao, T.P. Ding, Q.Z. Zhong et al., Multilayered paper-like electrodes composed of alternating stacked mesoporous Mo2N nanobelts and reduced graphene oxide for flexible all-solid-state supercapacitors. J. Mater. Chem. A 3, 14617–14624 (2015). https://doi.org/10.1039/c5ta02851e