Spontaneous Orientation Polarization of Anisotropic Equivalent Dipoles Harnessed by Entropy Engineering for Ultra-Thin Electromagnetic Wave Absorber
Corresponding Author: Junye Cheng
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 19
Abstract
The synthesis of carbon supporter/nanoscale high-entropy alloys (HEAs) electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engineering of conductive/dielectric genes. Electron migration modes within HEAs as manipulated by the electronegativity, valence electron configurations and molar proportions of constituent elements determine the steady state and efficiency of equivalent dipoles. Herein, enlightened by skin-like effect, a reformative carbothermal shock method using carbonized cellulose paper (CCP) as carbon supporter is used to preserve the oxygen-containing functional groups (O·) of carbonized cellulose fibers (CCF). Nucleation of HEAs and construction of emblematic shell-core CCF/HEAs heterointerfaces are inextricably linked to carbon metabolism induced by O·. Meanwhile, the electron migration mode of switchable electron-rich sites promotes the orientation polarization of anisotropic equivalent dipoles. By virtue of the reinforcement strategy, CCP/HEAs composite prepared by 35% molar ratio of Mn element (CCP/HEAs-Mn2.15) achieves efficient electromagnetic wave (EMW) absorption of − 51.35 dB at an ultra-thin thickness of 1.03 mm. The mechanisms of the resulting dielectric properties of HEAs-based EMW absorbing materials are elucidated by combining theoretical calculations with experimental characterizations, which provide theoretical bases and feasible strategies for the simulation and practical application of electromagnetic functional devices (e.g., ultra-wideband bandpass filter).
Highlights:
1 The strengthening mechanism of spontaneous orientation polarization of anisotropic equivalent dipoles within high-entropy alloys (HEAs) is proposed for enhancing dielectric attenuation of HEAs.
2 The source of carbon supporter is expanded to the biomass category, which can construct the shell-core heterointerfaces with HEAs by means of a reformative carbothermal shock method.
3 The sample carbonized cellulose paper/HEAs-Mn2.15 achieves efficient electromagnetic wave absorption of -51.35 dB at an ultra-thin thickness of 1.03 mm.
4 This work combines theoretical calculations and electromagnetic simulations to propose feasible strategies for the design and application of electromagnetic functional devices such as ultra-wideband bandpass filter.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Sun, Y. Sun, Synthesis of metallic high-entropy alloy nanops. Chem. Soc. Rev. 53, 4400–4433 (2024). https://doi.org/10.1039/d3cs00954h
- J. Cheng, Y. Li, H. Raza, R. Che, Y. Jin et al., Cross-scale synergistic manipulation of dielectric genes in polymetallic sulfides from micropolarization to macroconductance toward wide-band microwave absorption. Adv. Funct. Mater. 2405643 (2024). https://doi.org/10.1002/adfm.202405643
- Z. Qiu, X. Liu, T. Yang, J. Wang, Y. Wang et al., Synergistic enhancement of electromagnetic wave absorption and corrosion resistance properties of high entropy alloy through lattice distortion engineering. Adv. Funct. Mater. 2400220 (2024). https://doi.org/10.1002/adfm.202400220
- Y. Tang, R. Wang, B. Xiao, Z. Zhang, S. Li et al., A review on the dynamic-mechanical behaviors of high-entropy alloys. Prog. Mater. Sci. 135, 101090 (2023). https://doi.org/10.1016/j.pmatsci.2023.101090
- Y. Fu, Y. Wang, J. Cheng, Y. Li, J. Wang et al., Manipulating polarization attenuation in NbS2–NiS2 nanoflowers through homogeneous heterophase interface engineering toward microwave absorption with shifted frequency bands. Nano Mater. Sci. (2024). https://doi.org/10.1016/j.nanoms.2024.05.003
- Y.-J. Wang, H.-C. Lai, Y.-A. Chen, R. Huang, T. Hsin et al., High entropy nonlinear dielectrics with superior thermally stable performance. Adv. Mater. 35, e2304128 (2023). https://doi.org/10.1002/adma.202304128
- D. Kumar, Recent advances in tribology of high entropy alloys: a critical review. Prog. Mater. Sci. 136, (2023). https://doi.org/10.1016/j.pmatsci.2023.101106
- K. Miao, W. Jiang, Z. Chen, Y. Luo, D. Xiang et al., Hollow-structured and polyhedron-shaped high entropy oxide toward highly active and robust oxygen evolution reaction in a full pH range. Adv. Mater. 36, e2308490 (2024). https://doi.org/10.1002/adma.202308490
- Y. Xu, L. Wang, Z. Shi, N. Su, C. Li et al., Peroxide-mediated selective conversion of biomass polysaccharides over high entropy sulfides via solar energy catalysis. Energy Environ. Sci. 16, 1531–1539 (2023). https://doi.org/10.1039/D2EE03357G
- X. He, Y. Qian, C. Wu, J. Feng, X. Sun et al., Entropy-mediated high-entropy MXenes nanotherapeutics: NIR-II-enhanced intrinsic oxidase mimic activity to combat methicillin-resistant Staphylococcus aureus infection. Adv. Mater. 35, e2211432 (2023). https://doi.org/10.1002/adma.202211432
- S. Huang, J. Zhang, H. Fu, Y. Xiong, S. Ma et al., Irradiation performance of high entropy ceramics: a comprehensive comparison with conventional ceramics and high entropy alloys. Prog. Mater. Sci. 143, 101250 (2024). https://doi.org/10.1016/j.pmatsci.2024.101250
- Z. Zhou, X. Yang, D. Zhang, H. Zhang, J. Cheng et al., Achieving superior GHz-absorption performance in VB-group laminated VS2 microwave absorber with dielectric and magnetic synergy effects. Adv. Compos. Hybrid Mater. 5, 2317–2327 (2022). https://doi.org/10.1007/s42114-022-00416-3
- J. Wang, Y. Wang, J. Cheng, Y. Fu, Y. Li et al., Abundant vacancies induced high polarization-attenuation effects in flower-like WS2 microwave absorbers. J. Mater. Sci. Technol. 194, 193–202 (2024). https://doi.org/10.1016/j.jmst.2024.01.085
- B. Zhan, Y. Qu, X. Qi, J. Ding, J.-J. Shao et al., Mixed-dimensional assembly strategy to construct reduced graphene oxide/carbon foams heterostructures for microwave absorption, anti-corrosion and thermal insulation. Nano-Micro Lett. 16, 221 (2024). https://doi.org/10.1007/s40820-024-01447-9
- S. Shi, Y. Jiang, H. Ren, S. Deng, J. Sun et al., 3D-printed carbon-based conformal electromagnetic interference shielding module for integrated electronics. Nano-Micro Lett. 16, 85 (2024). https://doi.org/10.1007/s40820-023-01317-w
- J.S. Lee, J.W. Kim, J.H. Lee, Y.K. Son, Y.B. Kim et al., Flash-induced high-throughput porous graphene via synergistic photo-effects for electromagnetic interference shielding. Nano-Micro Lett. 15, 191 (2023). https://doi.org/10.1007/s40820-023-01157-8
- D. Zhang, S. Liang, J. Chai, T. Liu, X. Yang et al., Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. J. Phys. Chem. Solids 134, 77–82 (2019). https://doi.org/10.1016/j.jpcs.2019.05.041
- H. Zhang, T. Liu, Z. Huang, J. Cheng, H. Wang et al., Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. J. Materiomics 8, 327–334 (2022). https://doi.org/10.1016/j.jmat.2021.09.003
- H. Wang, X. Xiao, Q. An, Z. Xiao, K. Zhu et al., Low-frequency evolution mechanism of customized HEAs-based electromagnetic response modes manipulated by carbothermal shock. Small 20, e2309773 (2024). https://doi.org/10.1002/smll.202309773
- H. Wang, Q. He, X. Gao, Y. Shang, W. Zhu et al., Multifunctional high entropy alloys enabled by severe lattice distortion. Adv. Mater. 36, e2305453 (2024). https://doi.org/10.1002/adma.202305453
- R. He, L. Yang, Y. Zhang, D. Jiang, S. Lee et al., A 3d–4d-5d high entropy alloy as a bifunctional oxygen catalyst for robust aqueous zinc-air batteries. Adv. Mater. 35, e2303719 (2023). https://doi.org/10.1002/adma.202303719
- M. Xie, X. Xiao, D. Wu, C. Zhen, C. Wu et al., MOF-mediated synthesis of novel PtFeCoNiMn high-entropy nano-alloy as bifunctional oxygen electrocatalysts for zinc-air battery. Nano Res. 17, 5288–5297 (2024). https://doi.org/10.1007/s12274-024-6526-4
- H. Zhu, S. Sun, J. Hao, Z. Zhuang, S. Zhang et al., A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 16, 619–628 (2023). https://doi.org/10.1039/D2EE03185J
- Z. Yuan, M. Wu, S. Han, P. Liu, Z. Ge et al., Entropy engineering enabled atomically dispersed Cu doping leading to an exceptionally high thermoelectric figure of merit in n-type lead chalcogenides. Energy Environ. Sci. 17, 2921–2934 (2024). https://doi.org/10.1039/D4EE00691G
- L. Sun, J.A. Yuwono, S. Zhang, B. Chen, G. Li et al., High entropy alloys enable durable and efficient lithium-mediated CO2 redox reactions. Adv. Mater. 36, e2401288 (2024). https://doi.org/10.1002/adma.202401288
- N.B. Balabanov, K.A. Peterson, Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn. J. Chem. Phys. 123, 64107 (2005). https://doi.org/10.1063/1.1998907
- C.H. Hodges, M.J. Stott, Work functions for positrons in metals. Phys. Rev. B 7, 73–79 (1973). https://doi.org/10.1103/physrevb.7.73
- X. Zhang, X.-L. Tian, Y. Qin, J. Qiao, F. Pan et al., Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 17, 12510–12518 (2023). https://doi.org/10.1021/acsnano.3c02170
- S. Hou, Y. Wang, F. Gao, H. Yang, F. Jin et al., A novel approach to electromagnetic wave absorbing material design: Utilizing nano-antenna arrays for efficient electromagnetic wave capture. Chem. Eng. J. 471, 144779 (2023). https://doi.org/10.1016/j.cej.2023.144779
- F. Pan, K. Pei, G. Chen, H. Guo, H. Jiang et al., Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 33, 2306599 (2023). https://doi.org/10.1002/adfm.202306599
- Y. Yao, Z. Huang, P. Xie, S.D. Lacey, R.J. Jacob et al., Carbothermal shock synthesis of high-entropy-alloy nanops. Science 359, 1489–1494 (2018). https://doi.org/10.1126/science.aan5412
- M.G. Stanford, K.V. Bets, D.X. Luong, P.A. Advincula, W. Chen et al., Flash graphene morphologies. ACS Nano 14, 13691–13699 (2020). https://doi.org/10.1021/acsnano.0c05900
- H. Wang, H. Zhang, J. Cheng, T. Liu, D. Zhang et al., Building the conformal protection of VB-group VS2 laminated heterostructure based on biomass-derived carbon for excellent broadband electromagnetic waves absorption. J. Mater. 9, 492–501 (2023). https://doi.org/10.1016/j.jmat.2022.12.003
- X. Xiao, H. Wang, X. Wang, C. Liu, Y. Han et al., Innovative lignin photocatalyst system motivated by intramolecular charge dynamics for H2O2 production. Chem. Eng. J. 494, 153151 (2024). https://doi.org/10.1016/j.cej.2024.153151
- H. Wang, Q. An, Z. Xiao, Y. Tong, L. Guo et al., Marine polysaccharide-based electromagnetic absorbing/shielding materials: design principles, structure, and properties. J. Mater. Chem. A 10, 17023–17052 (2022). https://doi.org/10.1039/D2TA03529D
- J. Ahn, S. Park, D. Oh, Y. Lim, J.S. Nam et al., Rapid Joule heating synthesis of oxide-socketed high-entropy alloy nanops as CO2 conversion catalysts. ACS Nano 17, 12188–12199 (2023). https://doi.org/10.1021/acsnano.3c00443
- A. Abdelhafiz, B. Wang, A.R. Harutyunyan, Ju. Li, Carbothermal shock synthesis of high entropy oxide catalysts: dynamic structural and chemical reconstruction boosting the catalytic activity and stability toward oxygen evolution reaction. Adv. Energy Mater. 12, 2200442 (2022). https://doi.org/10.1002/aenm.202200742
- X. Xiao, X. Wang, Y. Li, Y. Li, G. Sun et al., A two-electron migration mechanism co-constructed by K+ passivation and defect engineering for efficient TiO2 photocatalytic hydrogen evolution. Appl. Surf. Sci. 631, 157577 (2023). https://doi.org/10.1016/j.apsusc.2023.157577
- S.S. Aamlid, M. Oudah, J. Rottler, A.M. Hallas, Understanding the role of entropy in high entropy oxides. J. Am. Chem. Soc. 145, 5991–6006 (2023). https://doi.org/10.1021/jacs.2c11608
- B. Ran, H. Li, R. Cheng, Z. Yang, Y. Zhong et al., High-entropy oxides for rechargeable batteries. Adv. Sci. 11, 2401034 (2024). https://doi.org/10.1002/advs.202401034
- J. Cheng, Y. Jin, J. Zhao, Q. Jing, B. Gu et al., From VIB- to VB-group transition metal disulfides: structure engineering modulation for superior electromagnetic wave absorption. Nano-Micro Lett. 16, 29 (2023). https://doi.org/10.1007/s40820-023-01247-7
- J. Cheng, S. Ran, T. Li, M. Yan, J. Wu et al., Achieving superior tensile performance in individual metal-organic framework crystals. Adv. Mater. 35, e2210829 (2023). https://doi.org/10.1002/adma.202210829
- X. Xiao, X. Wang, C. Liu, Y. Han, Confinement effect of carbon fibres@TiO2 Schottky heterojunctions for Ag-plasmonic photocatalysis with switchable hot/photo electrons. Mater. Today Energy 43, 101569 (2024). https://doi.org/10.1016/j.mtener.2024.101569
References
X. Sun, Y. Sun, Synthesis of metallic high-entropy alloy nanops. Chem. Soc. Rev. 53, 4400–4433 (2024). https://doi.org/10.1039/d3cs00954h
J. Cheng, Y. Li, H. Raza, R. Che, Y. Jin et al., Cross-scale synergistic manipulation of dielectric genes in polymetallic sulfides from micropolarization to macroconductance toward wide-band microwave absorption. Adv. Funct. Mater. 2405643 (2024). https://doi.org/10.1002/adfm.202405643
Z. Qiu, X. Liu, T. Yang, J. Wang, Y. Wang et al., Synergistic enhancement of electromagnetic wave absorption and corrosion resistance properties of high entropy alloy through lattice distortion engineering. Adv. Funct. Mater. 2400220 (2024). https://doi.org/10.1002/adfm.202400220
Y. Tang, R. Wang, B. Xiao, Z. Zhang, S. Li et al., A review on the dynamic-mechanical behaviors of high-entropy alloys. Prog. Mater. Sci. 135, 101090 (2023). https://doi.org/10.1016/j.pmatsci.2023.101090
Y. Fu, Y. Wang, J. Cheng, Y. Li, J. Wang et al., Manipulating polarization attenuation in NbS2–NiS2 nanoflowers through homogeneous heterophase interface engineering toward microwave absorption with shifted frequency bands. Nano Mater. Sci. (2024). https://doi.org/10.1016/j.nanoms.2024.05.003
Y.-J. Wang, H.-C. Lai, Y.-A. Chen, R. Huang, T. Hsin et al., High entropy nonlinear dielectrics with superior thermally stable performance. Adv. Mater. 35, e2304128 (2023). https://doi.org/10.1002/adma.202304128
D. Kumar, Recent advances in tribology of high entropy alloys: a critical review. Prog. Mater. Sci. 136, (2023). https://doi.org/10.1016/j.pmatsci.2023.101106
K. Miao, W. Jiang, Z. Chen, Y. Luo, D. Xiang et al., Hollow-structured and polyhedron-shaped high entropy oxide toward highly active and robust oxygen evolution reaction in a full pH range. Adv. Mater. 36, e2308490 (2024). https://doi.org/10.1002/adma.202308490
Y. Xu, L. Wang, Z. Shi, N. Su, C. Li et al., Peroxide-mediated selective conversion of biomass polysaccharides over high entropy sulfides via solar energy catalysis. Energy Environ. Sci. 16, 1531–1539 (2023). https://doi.org/10.1039/D2EE03357G
X. He, Y. Qian, C. Wu, J. Feng, X. Sun et al., Entropy-mediated high-entropy MXenes nanotherapeutics: NIR-II-enhanced intrinsic oxidase mimic activity to combat methicillin-resistant Staphylococcus aureus infection. Adv. Mater. 35, e2211432 (2023). https://doi.org/10.1002/adma.202211432
S. Huang, J. Zhang, H. Fu, Y. Xiong, S. Ma et al., Irradiation performance of high entropy ceramics: a comprehensive comparison with conventional ceramics and high entropy alloys. Prog. Mater. Sci. 143, 101250 (2024). https://doi.org/10.1016/j.pmatsci.2024.101250
Z. Zhou, X. Yang, D. Zhang, H. Zhang, J. Cheng et al., Achieving superior GHz-absorption performance in VB-group laminated VS2 microwave absorber with dielectric and magnetic synergy effects. Adv. Compos. Hybrid Mater. 5, 2317–2327 (2022). https://doi.org/10.1007/s42114-022-00416-3
J. Wang, Y. Wang, J. Cheng, Y. Fu, Y. Li et al., Abundant vacancies induced high polarization-attenuation effects in flower-like WS2 microwave absorbers. J. Mater. Sci. Technol. 194, 193–202 (2024). https://doi.org/10.1016/j.jmst.2024.01.085
B. Zhan, Y. Qu, X. Qi, J. Ding, J.-J. Shao et al., Mixed-dimensional assembly strategy to construct reduced graphene oxide/carbon foams heterostructures for microwave absorption, anti-corrosion and thermal insulation. Nano-Micro Lett. 16, 221 (2024). https://doi.org/10.1007/s40820-024-01447-9
S. Shi, Y. Jiang, H. Ren, S. Deng, J. Sun et al., 3D-printed carbon-based conformal electromagnetic interference shielding module for integrated electronics. Nano-Micro Lett. 16, 85 (2024). https://doi.org/10.1007/s40820-023-01317-w
J.S. Lee, J.W. Kim, J.H. Lee, Y.K. Son, Y.B. Kim et al., Flash-induced high-throughput porous graphene via synergistic photo-effects for electromagnetic interference shielding. Nano-Micro Lett. 15, 191 (2023). https://doi.org/10.1007/s40820-023-01157-8
D. Zhang, S. Liang, J. Chai, T. Liu, X. Yang et al., Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. J. Phys. Chem. Solids 134, 77–82 (2019). https://doi.org/10.1016/j.jpcs.2019.05.041
H. Zhang, T. Liu, Z. Huang, J. Cheng, H. Wang et al., Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. J. Materiomics 8, 327–334 (2022). https://doi.org/10.1016/j.jmat.2021.09.003
H. Wang, X. Xiao, Q. An, Z. Xiao, K. Zhu et al., Low-frequency evolution mechanism of customized HEAs-based electromagnetic response modes manipulated by carbothermal shock. Small 20, e2309773 (2024). https://doi.org/10.1002/smll.202309773
H. Wang, Q. He, X. Gao, Y. Shang, W. Zhu et al., Multifunctional high entropy alloys enabled by severe lattice distortion. Adv. Mater. 36, e2305453 (2024). https://doi.org/10.1002/adma.202305453
R. He, L. Yang, Y. Zhang, D. Jiang, S. Lee et al., A 3d–4d-5d high entropy alloy as a bifunctional oxygen catalyst for robust aqueous zinc-air batteries. Adv. Mater. 35, e2303719 (2023). https://doi.org/10.1002/adma.202303719
M. Xie, X. Xiao, D. Wu, C. Zhen, C. Wu et al., MOF-mediated synthesis of novel PtFeCoNiMn high-entropy nano-alloy as bifunctional oxygen electrocatalysts for zinc-air battery. Nano Res. 17, 5288–5297 (2024). https://doi.org/10.1007/s12274-024-6526-4
H. Zhu, S. Sun, J. Hao, Z. Zhuang, S. Zhang et al., A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 16, 619–628 (2023). https://doi.org/10.1039/D2EE03185J
Z. Yuan, M. Wu, S. Han, P. Liu, Z. Ge et al., Entropy engineering enabled atomically dispersed Cu doping leading to an exceptionally high thermoelectric figure of merit in n-type lead chalcogenides. Energy Environ. Sci. 17, 2921–2934 (2024). https://doi.org/10.1039/D4EE00691G
L. Sun, J.A. Yuwono, S. Zhang, B. Chen, G. Li et al., High entropy alloys enable durable and efficient lithium-mediated CO2 redox reactions. Adv. Mater. 36, e2401288 (2024). https://doi.org/10.1002/adma.202401288
N.B. Balabanov, K.A. Peterson, Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn. J. Chem. Phys. 123, 64107 (2005). https://doi.org/10.1063/1.1998907
C.H. Hodges, M.J. Stott, Work functions for positrons in metals. Phys. Rev. B 7, 73–79 (1973). https://doi.org/10.1103/physrevb.7.73
X. Zhang, X.-L. Tian, Y. Qin, J. Qiao, F. Pan et al., Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 17, 12510–12518 (2023). https://doi.org/10.1021/acsnano.3c02170
S. Hou, Y. Wang, F. Gao, H. Yang, F. Jin et al., A novel approach to electromagnetic wave absorbing material design: Utilizing nano-antenna arrays for efficient electromagnetic wave capture. Chem. Eng. J. 471, 144779 (2023). https://doi.org/10.1016/j.cej.2023.144779
F. Pan, K. Pei, G. Chen, H. Guo, H. Jiang et al., Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 33, 2306599 (2023). https://doi.org/10.1002/adfm.202306599
Y. Yao, Z. Huang, P. Xie, S.D. Lacey, R.J. Jacob et al., Carbothermal shock synthesis of high-entropy-alloy nanops. Science 359, 1489–1494 (2018). https://doi.org/10.1126/science.aan5412
M.G. Stanford, K.V. Bets, D.X. Luong, P.A. Advincula, W. Chen et al., Flash graphene morphologies. ACS Nano 14, 13691–13699 (2020). https://doi.org/10.1021/acsnano.0c05900
H. Wang, H. Zhang, J. Cheng, T. Liu, D. Zhang et al., Building the conformal protection of VB-group VS2 laminated heterostructure based on biomass-derived carbon for excellent broadband electromagnetic waves absorption. J. Mater. 9, 492–501 (2023). https://doi.org/10.1016/j.jmat.2022.12.003
X. Xiao, H. Wang, X. Wang, C. Liu, Y. Han et al., Innovative lignin photocatalyst system motivated by intramolecular charge dynamics for H2O2 production. Chem. Eng. J. 494, 153151 (2024). https://doi.org/10.1016/j.cej.2024.153151
H. Wang, Q. An, Z. Xiao, Y. Tong, L. Guo et al., Marine polysaccharide-based electromagnetic absorbing/shielding materials: design principles, structure, and properties. J. Mater. Chem. A 10, 17023–17052 (2022). https://doi.org/10.1039/D2TA03529D
J. Ahn, S. Park, D. Oh, Y. Lim, J.S. Nam et al., Rapid Joule heating synthesis of oxide-socketed high-entropy alloy nanops as CO2 conversion catalysts. ACS Nano 17, 12188–12199 (2023). https://doi.org/10.1021/acsnano.3c00443
A. Abdelhafiz, B. Wang, A.R. Harutyunyan, Ju. Li, Carbothermal shock synthesis of high entropy oxide catalysts: dynamic structural and chemical reconstruction boosting the catalytic activity and stability toward oxygen evolution reaction. Adv. Energy Mater. 12, 2200442 (2022). https://doi.org/10.1002/aenm.202200742
X. Xiao, X. Wang, Y. Li, Y. Li, G. Sun et al., A two-electron migration mechanism co-constructed by K+ passivation and defect engineering for efficient TiO2 photocatalytic hydrogen evolution. Appl. Surf. Sci. 631, 157577 (2023). https://doi.org/10.1016/j.apsusc.2023.157577
S.S. Aamlid, M. Oudah, J. Rottler, A.M. Hallas, Understanding the role of entropy in high entropy oxides. J. Am. Chem. Soc. 145, 5991–6006 (2023). https://doi.org/10.1021/jacs.2c11608
B. Ran, H. Li, R. Cheng, Z. Yang, Y. Zhong et al., High-entropy oxides for rechargeable batteries. Adv. Sci. 11, 2401034 (2024). https://doi.org/10.1002/advs.202401034
J. Cheng, Y. Jin, J. Zhao, Q. Jing, B. Gu et al., From VIB- to VB-group transition metal disulfides: structure engineering modulation for superior electromagnetic wave absorption. Nano-Micro Lett. 16, 29 (2023). https://doi.org/10.1007/s40820-023-01247-7
J. Cheng, S. Ran, T. Li, M. Yan, J. Wu et al., Achieving superior tensile performance in individual metal-organic framework crystals. Adv. Mater. 35, e2210829 (2023). https://doi.org/10.1002/adma.202210829
X. Xiao, X. Wang, C. Liu, Y. Han, Confinement effect of carbon fibres@TiO2 Schottky heterojunctions for Ag-plasmonic photocatalysis with switchable hot/photo electrons. Mater. Today Energy 43, 101569 (2024). https://doi.org/10.1016/j.mtener.2024.101569