Crystallographic Engineering Enables Fast Low-Temperature Ion Transport of TiNb2O7 for Cold-Region Lithium-Ion Batteries
Corresponding Author: Shuaifeng Lou
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 91
Abstract
TiNb2O7 represents an up-and-coming anode material for fast-charging lithium-ion batteries, but its practicalities are severely impeded by slow transfer rates of ionic and electronic especially at the low-temperature conditions. Herein, we introduce crystallographic engineering to enhance structure stability and promote Li+ diffusion kinetics of TiNb2O7 (TNO). The density functional theory computation reveals that Ti4+ is replaced by Sb5+ and Nb5+ in crystal lattices, which can reduce the Li+ diffusion impediment and improve electronic conductivity. Synchrotron radiation X-ray 3D nano-computed tomography and in situ X-ray diffraction measurement confirm the introduction of Sb/Nb alleviates volume expansion during lithiation and delithiation processes, contributing to enhancing structure stability. Extended X-ray absorption fine structure spectra results verify that crystallographic engineering also increases short Nb-O bond length in TNO-Sb/Nb. Accordingly, the TNO-Sb/Nb anode delivers an outstanding capacity retention rate of 89.8% at 10 C after 700 cycles and excellent rate performance (140.4 mAh g−1 at 20 C). Even at −30 °C, TNO-Sb/Nb anode delivers a capacity of 102.6 mAh g−1 with little capacity degeneration for 500 cycles. This work provides guidance for the design of fast-charging batteries at low-temperature condition.
Highlights:
1 Sb element is introduced into TiNb2O7 successfully.
2 Such crystallographic engineering can narrow the bandgap and broaden the Li+ transport channel, making TNO-Sb/Nb electrode possess a better low-temperature performance.
3 Such a synergy effect enables TNO-Sb/Nb with large reversible capacity, superior rate performance (140.4 mAh g−1 at 20 C), and a high durability of 500 cycles even at −30 °C, holding brand promises in practical applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.-Y. Wang, T. Liu, X.-G. Yang, S. Ge, N.V. Stanley et al., Fast charging of energy-dense lithium-ion batteries. Nature 611(7936), 485–490 (2022). https://doi.org/10.1038/s41586-022-05281-0
- J. Liu, M. Yue, S. Wang, Y. Zhao, J. Zhang, A review of performance attenuation and mitigation strategies of lithium-ion batteries. Adv. Funct. Mater. 32(8), 2107769 (2022). https://doi.org/10.1002/adfm.202107769
- M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N.R. Levy et al., Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11(33), 2101126 (2021). https://doi.org/10.1002/aenm.202101126
- L. Zhao, B. Ding, X.-Y. Qin, Z. Wang, W. Lv et al., Revisiting the roles of natural graphite in ongoing lithium-ion batteries. Adv. Mater. 34(18), 2106704 (2022). https://doi.org/10.1002/adma.202106704
- J. Bi, Z. Du, J. Sun, Y. Liu, K. Wang et al., On the road to the frontiers of lithium-ion batteries: a review and outlook of graphene anodes. Adv. Mater. 35(16), 2210734 (2023). https://doi.org/10.1002/adma.202210734
- T. Gao, Y. Han, D. Fraggedakis, S. Das, T. Zhou et al., Interplay of lithium intercalation and plating on a single graphite p. Joule 5(2), 393–414 (2021). https://doi.org/10.1016/j.joule.2020.12.020
- J. Hou, M. Yang, D. Wang, J. Zhang, Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 °C. Adv. Energy Mater. 10(18), 1904152 (2020). https://doi.org/10.1002/aenm.201904152
- Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4(7), 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
- C.-Y. Wang, G. Zhang, S. Ge, T. Xu, Y. Ji et al., Lithium-ion battery structure that self-heats at low temperatures. Nature 529(7587), 515–518 (2016). https://doi.org/10.1038/nature16502
- L. Zhang, C. Zhu, S. Yu, D. Ge, H. Zhou, Status and challenges facing representative anode materials for rechargeable lithium batteries. J. Energy Chem. 66, 260–294 (2022). https://doi.org/10.1016/j.jechem.2021.08.001
- J.-T. Han, Y.-H. Huang, J.B. Goodenough, New anode framework for rechargeable lithium batteries. Chem. Mater. 23(8), 2027–2029 (2011). https://doi.org/10.1021/cm200441h
- Y. Yang, J. Zhao, Wadsley-Roth crystallographic shear structure niobium‐based oxides: promising anode materials for high‐safety lithium‐ion batteries. Adv. Sci. 8(12), 2004855 (2021). https://doi.org/10.1002/advs.202004855
- Y. Zhang, W. Zhao, C. Kang, S. Geng, J. Zhu et al., Phase-junction engineering triggered built-in electric field for fast-charging batteries operated at −30 °C. Matter 6(6), 1928–1944 (2023). https://doi.org/10.1016/j.matt.2023.03.026
- S. Geng, Y. Zhang, L. Shi, A. Shi, L. Zhou et al., Enabling 20 min fast-charging Ah-level pouch cell by tailoring the electronic structure and ion diffusion in TiNb2O7. Energy Storage Mater. 68, 103339 (2024). https://doi.org/10.1016/j.ensm.2024.103339
- A. Shi, Y. Zhang, S. Geng, X. Song, G. Yin et al., Highly oxidized state dopant induced Nb-O bond distortion of TiNb2O7 for extremely fast-charging batteries. Nano Energy 123, 109349 (2024). https://doi.org/10.1016/j.nanoen.2024.109349
- L. Yin, D. Pham-Cong, I. Jeon, J.-P. Kim, J. Cho et al., Electrochemical performance of vertically grown WS2 layers on TiNb2O7 nanostructures for lithium-ion battery anodes. Chem. Eng. J. 382, 122800 (2020). https://doi.org/10.1016/j.cej.2019.122800
- F. Yu, B. Miglani, S. Yuan, R. Yekani, K.H. Bevan et al., Fe3+-substitutional doping of nanostructured single-crystal TiNb2O7 for long-stable cycling of ultra-fast charging anodes. Nano Energy 133, 110494 (2025). https://doi.org/10.1016/j.nanoen.2024.110494
- I. Jeon, L. Yin, D. Yang, H. Chen, S.W. Go et al., Enhanced Li storage of pure crystalline-C60 and TiNb2O7-nanostructure composite for Li-ion battery anodes. J. Energy Chem. 97, 478–485 (2024). https://doi.org/10.1016/j.jechem.2024.06.004
- B. Guo, X. Yu, X.-G. Sun, M. Chi, Z.-A. Qiao et al., A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage. Energy Environ. Sci. 7(7), 2220–2226 (2014). https://doi.org/10.1039/C4EE00508B
- H. Wang, R. Qian, Y. Cheng, H.-H. Wu, X. Wu et al., Micro/nanostructured TiNb2O7-related electrode materials for high-performance electrochemical energy storage: recent advances and future prospects. J. Mater. Chem. A 8(36), 18425–18463 (2020). https://doi.org/10.1039/D0TA04209A
- R. Zhan, S. Liu, W. Wang, Z. Chen, S. Tu et al., Micrometer-scale single crystalline ps of niobium titanium oxide enabling an Ah-level pouch cell with superior fast-charging capability. Mater. Horiz. 10(11), 5246–5255 (2023). https://doi.org/10.1039/D3MH01160G
- R. Wang, L. Wang, R. Liu, X. Li, Y. Wu et al., “Fast-charging” anode materials for lithium-ion batteries from perspective of ion diffusion in crystal structure. ACS Nano 18(4), 2611–2648 (2024). https://doi.org/10.1021/acsnano.3c08712
- L. Hu, L. Luo, L. Tang, C. Lin, R. Li et al., Ti2Nb2xO4+5x anode materials for lithium-ion batteries: a comprehensive review. J. Mater. Chem. A 6(21), 9799–9815 (2018). https://doi.org/10.1039/c8ta00895g
- H. Song, Y.-T. Kim, A Mo-doped TiNb2O7 anode for lithium-ion batteries with high rate capability due to charge redistribution. Chem. Commun. 51(48), 9849–9852 (2015). https://doi.org/10.1039/C5CC02221E
- Y. Sheng, X. Yue, W. Hao, Y. Dong, Y. Liu et al., Balancing the ion/electron transport of graphite anodes by a La-doped TiNb2O7 functional coating for fast-charging Li-ion batteries. Nano Lett. 24(12), 3694–3701 (2024). https://doi.org/10.1021/acs.nanolett.3c05151
- S. Zhu, M. Su, S. Lu, S. Yang, Y. Huang et al., Enhanced performance of Mo-doped TiNb2O7 anode material for lithium-ion batteries via KOH sub-molten salt synthesis. Appl. Surf. Sci. 669, 160507 (2024). https://doi.org/10.1016/j.apsusc.2024.160507
- C. Yang, D. Ma, J. Yang, M. Manawan, T. Zhao et al., Crystallographic insight of reduced lattice volume expansion in mesoporous Cu2+-doped TiNb2O7 microspheres during Li+ insertion. Adv. Funct. Mater. 33(15), 2212854 (2023). https://doi.org/10.1002/adfm.202212854
- Y. Zhang, C. Kang, W. Zhao, B. Sun, X. Xiao et al., Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries. Energy Storage Mater. 47, 178–186 (2022). https://doi.org/10.1016/j.ensm.2022.01.061
- G. Yu, J. Huang, X. Bai, T. Li, S. Song et al., Engineering of cerium modified TiNb2O7 nanops for low-temperature lithium-ion battery. Small 20(34), e2308858 (2024). https://doi.org/10.1002/smll.202308858
- X. Jin, Y. Deng, H. Tian, M. Zhou, W. Tang et al., Homovalent doping: an efficient strategy of the enhanced TiNb2O7 anode for lithium-ion batteries. Green Energy Environ. 9(8), 1257–1266 (2024). https://doi.org/10.1016/j.gee.2023.01.007
- C. Yang, C. Lin, S. Lin, Y. Chen, J. Li, Cu0.02Ti0.94Nb2.04O7: an advanced anode material for lithium-ion batteries of electric vehicles. J. Power. Sources 328, 336–344 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.027
- J. Gao, X. Cheng, S. Lou, Y. Ma, P. Zuo et al., Self-doping Ti1-xNb2+xO7 anode material for lithium-ion battery and its electrochemical performance. J. Alloys Compd. 728, 534–540 (2017). https://doi.org/10.1016/j.jallcom.2017.09.045
- X. Cao, H. Li, Y. Qiao, P. He, Y. Qian et al., Reversible anionic redox chemistry in layered Li4/7[□1/7Mn6/7]O2 enabled by stable Li-O-vacancy configuration. Joule 6(6), 1290–1303 (2022). https://doi.org/10.1016/j.joule.2022.05.006
- J. Ma, Y. Xiang, J. Xu, W. Zhang, H. Zhang et al., Reducing lithium-diffusion barrier on the wadsley-Roth crystallographic shear plane via low-valent cation doping for ultrahigh power lithium-ion batteries. Adv. Energy Mater. 15(12), 2403623 (2025). https://doi.org/10.1002/aenm.202403623
- T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). https://doi.org/10.1038/nmat2612
- S. Lou, X. Cheng, Y. Zhao, A. Lushington, J. Gao et al., Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy 34, 15–25 (2017). https://doi.org/10.1016/j.nanoen.2017.01.058
- L. Zhu, S. Xiang, M. Wang, D. Sun, X. Zhang et al., Lattice regulation boosts working voltage and energy density of Na3.12Fe2.44(P2O7)2 cathode for sodium-ion batteries. Adv. Funct. Mater. 35(26), 2419611 (2025). https://doi.org/10.1002/adfm.202419611
- B. Peng, Y. Chen, F. Wang, Z. Sun, L. Zhao et al., Unusual site-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell. Adv. Mater. 34(6), e2103210 (2022). https://doi.org/10.1002/adma.202103210
- L. Du, Y. Zhang, Y. Xiao, D. Yuan, M. Yao et al., A defect-rich carbon induced built-in interfacial electric field accelerating ion-conduction towards superior-stable solid-state batteries. Energy Environ. Sci. 18(6), 2949–2961 (2025). https://doi.org/10.1039/D4EE05966B
- L. Xu, M. Yao, L. Du, Y. Chen, Y. Wei et al., Accelerating lithium ion conduction via activated interfacial dipole layer for long-life and high-voltage solid-state lithium-metal battery. J. Energy Chem. 108, 92–100 (2025). https://doi.org/10.1016/j.jechem.2025.03.073
- Q. Wang, Y. Zhang, M. Yao, K. Li, L. Xu et al., A lithium-selective “OR-gate” enables fast-kinetics and ultra-stable Li-rich cathodes for polymer-based solid-state batteries. Energy Environ. Sci. 18(6), 2931–2939 (2025). https://doi.org/10.1039/D4EE05264A
- Y. Zhang, Y. Chen, M. Yan, F. Chen, Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. J. Power. Sources 283, 464–477 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.107
- Y. Lu, C.-Z. Zhao, R. Zhang, H. Yuan, L.-P. Hou et al., The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Sci. Adv. 7(38), eabi5520 (2021). https://doi.org/10.1126/sciadv.abi5520
- Y. Zhang, M. Yao, P. Jing, Y. Fu, W. Wang et al., Achieving a highly reversible four-electron redox of S/Cu2S for aqueous Zn/S─Cu battery. Angew. Chem. Int. Ed. 137(25), e202501205 (2025). https://doi.org/10.1002/ange.202501205
- P. Xue, C. Guo, L. Tan, Hydrogen-bonding crosslinking MXene to highly mechanically stable and super-zincophilic host for stable Zn metal anode. Chem. Eng. J. 472, 145056 (2023). https://doi.org/10.1016/j.cej.2023.145056
- S. Li, X. Cao, C.N. Schmidt, Q. Xu, E. Uchaker et al., TiNb2O7/graphene composites as high-rate anode materials for lithium/sodium ion batteries. J. Mater. Chem. A 4(11), 4242–4251 (2016). https://doi.org/10.1039/C5TA10510B
- A.G. Ashish, P. Arunkumar, B. Babu, P. Manikandan, S. Sarang et al., TiNb2O7/Graphene hybrid material as high performance anode for lithium-ion batteries. Electrochim. Acta 176, 285–292 (2015). https://doi.org/10.1016/j.electacta.2015.06.122
- Y. Zhang, M. Zhang, Y. Liu, H. Zhu, L. Wang et al., Oxygen vacancy regulated TiNb2O7 compound with enhanced electrochemical performance used as anode material in Li-ion batteries. Electrochim. Acta 330, 135299 (2020). https://doi.org/10.1016/j.electacta.2019.135299
- G. Wang, Z. Wen, L. Du, Y.-E. Yang, S. Li et al., Hierarchical Ti-Nb oxide microspheres with synergic multiphase structure as ultra-long-life anode materials for lithium-ion batteries. J. Power. Sources 367, 106–115 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.061
- X. Wang, G. Shen, Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy 15, 104–115 (2015). https://doi.org/10.1016/j.nanoen.2015.04.011
- H. Li, L. Shen, G. Pang, S. Fang, H. Luo et al., TiNb2O7 nanops assembled into hierarchical microspheres as high-rate capability and long-cycle-life anode materials for lithium ion batteries. Nanoscale 7(2), 619–624 (2015). https://doi.org/10.1039/C4NR04847D
- S. Gong, Y. Wang, Q. Zhu, M. Li, Y. Wen et al., High-rate lithium storage performance of TiNb2O7 anode due to single-crystal structure coupling with Cr3+-doping. J. Power. Sources 564, 232672 (2023). https://doi.org/10.1016/j.jpowsour.2023.232672
- H. Bian, J. Gu, Z. Song, H. Gong, Z. Zhang et al., An effective strategy to achieve high-power electrode by tin doping: Snx-TiNb2O7 as a promising anode material with a large capacity and high-rate performance for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 34(26), 1826 (2023). https://doi.org/10.1007/s10854-023-11183-2
References
C.-Y. Wang, T. Liu, X.-G. Yang, S. Ge, N.V. Stanley et al., Fast charging of energy-dense lithium-ion batteries. Nature 611(7936), 485–490 (2022). https://doi.org/10.1038/s41586-022-05281-0
J. Liu, M. Yue, S. Wang, Y. Zhao, J. Zhang, A review of performance attenuation and mitigation strategies of lithium-ion batteries. Adv. Funct. Mater. 32(8), 2107769 (2022). https://doi.org/10.1002/adfm.202107769
M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N.R. Levy et al., Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11(33), 2101126 (2021). https://doi.org/10.1002/aenm.202101126
L. Zhao, B. Ding, X.-Y. Qin, Z. Wang, W. Lv et al., Revisiting the roles of natural graphite in ongoing lithium-ion batteries. Adv. Mater. 34(18), 2106704 (2022). https://doi.org/10.1002/adma.202106704
J. Bi, Z. Du, J. Sun, Y. Liu, K. Wang et al., On the road to the frontiers of lithium-ion batteries: a review and outlook of graphene anodes. Adv. Mater. 35(16), 2210734 (2023). https://doi.org/10.1002/adma.202210734
T. Gao, Y. Han, D. Fraggedakis, S. Das, T. Zhou et al., Interplay of lithium intercalation and plating on a single graphite p. Joule 5(2), 393–414 (2021). https://doi.org/10.1016/j.joule.2020.12.020
J. Hou, M. Yang, D. Wang, J. Zhang, Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 °C. Adv. Energy Mater. 10(18), 1904152 (2020). https://doi.org/10.1002/aenm.201904152
Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4(7), 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
C.-Y. Wang, G. Zhang, S. Ge, T. Xu, Y. Ji et al., Lithium-ion battery structure that self-heats at low temperatures. Nature 529(7587), 515–518 (2016). https://doi.org/10.1038/nature16502
L. Zhang, C. Zhu, S. Yu, D. Ge, H. Zhou, Status and challenges facing representative anode materials for rechargeable lithium batteries. J. Energy Chem. 66, 260–294 (2022). https://doi.org/10.1016/j.jechem.2021.08.001
J.-T. Han, Y.-H. Huang, J.B. Goodenough, New anode framework for rechargeable lithium batteries. Chem. Mater. 23(8), 2027–2029 (2011). https://doi.org/10.1021/cm200441h
Y. Yang, J. Zhao, Wadsley-Roth crystallographic shear structure niobium‐based oxides: promising anode materials for high‐safety lithium‐ion batteries. Adv. Sci. 8(12), 2004855 (2021). https://doi.org/10.1002/advs.202004855
Y. Zhang, W. Zhao, C. Kang, S. Geng, J. Zhu et al., Phase-junction engineering triggered built-in electric field for fast-charging batteries operated at −30 °C. Matter 6(6), 1928–1944 (2023). https://doi.org/10.1016/j.matt.2023.03.026
S. Geng, Y. Zhang, L. Shi, A. Shi, L. Zhou et al., Enabling 20 min fast-charging Ah-level pouch cell by tailoring the electronic structure and ion diffusion in TiNb2O7. Energy Storage Mater. 68, 103339 (2024). https://doi.org/10.1016/j.ensm.2024.103339
A. Shi, Y. Zhang, S. Geng, X. Song, G. Yin et al., Highly oxidized state dopant induced Nb-O bond distortion of TiNb2O7 for extremely fast-charging batteries. Nano Energy 123, 109349 (2024). https://doi.org/10.1016/j.nanoen.2024.109349
L. Yin, D. Pham-Cong, I. Jeon, J.-P. Kim, J. Cho et al., Electrochemical performance of vertically grown WS2 layers on TiNb2O7 nanostructures for lithium-ion battery anodes. Chem. Eng. J. 382, 122800 (2020). https://doi.org/10.1016/j.cej.2019.122800
F. Yu, B. Miglani, S. Yuan, R. Yekani, K.H. Bevan et al., Fe3+-substitutional doping of nanostructured single-crystal TiNb2O7 for long-stable cycling of ultra-fast charging anodes. Nano Energy 133, 110494 (2025). https://doi.org/10.1016/j.nanoen.2024.110494
I. Jeon, L. Yin, D. Yang, H. Chen, S.W. Go et al., Enhanced Li storage of pure crystalline-C60 and TiNb2O7-nanostructure composite for Li-ion battery anodes. J. Energy Chem. 97, 478–485 (2024). https://doi.org/10.1016/j.jechem.2024.06.004
B. Guo, X. Yu, X.-G. Sun, M. Chi, Z.-A. Qiao et al., A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage. Energy Environ. Sci. 7(7), 2220–2226 (2014). https://doi.org/10.1039/C4EE00508B
H. Wang, R. Qian, Y. Cheng, H.-H. Wu, X. Wu et al., Micro/nanostructured TiNb2O7-related electrode materials for high-performance electrochemical energy storage: recent advances and future prospects. J. Mater. Chem. A 8(36), 18425–18463 (2020). https://doi.org/10.1039/D0TA04209A
R. Zhan, S. Liu, W. Wang, Z. Chen, S. Tu et al., Micrometer-scale single crystalline ps of niobium titanium oxide enabling an Ah-level pouch cell with superior fast-charging capability. Mater. Horiz. 10(11), 5246–5255 (2023). https://doi.org/10.1039/D3MH01160G
R. Wang, L. Wang, R. Liu, X. Li, Y. Wu et al., “Fast-charging” anode materials for lithium-ion batteries from perspective of ion diffusion in crystal structure. ACS Nano 18(4), 2611–2648 (2024). https://doi.org/10.1021/acsnano.3c08712
L. Hu, L. Luo, L. Tang, C. Lin, R. Li et al., Ti2Nb2xO4+5x anode materials for lithium-ion batteries: a comprehensive review. J. Mater. Chem. A 6(21), 9799–9815 (2018). https://doi.org/10.1039/c8ta00895g
H. Song, Y.-T. Kim, A Mo-doped TiNb2O7 anode for lithium-ion batteries with high rate capability due to charge redistribution. Chem. Commun. 51(48), 9849–9852 (2015). https://doi.org/10.1039/C5CC02221E
Y. Sheng, X. Yue, W. Hao, Y. Dong, Y. Liu et al., Balancing the ion/electron transport of graphite anodes by a La-doped TiNb2O7 functional coating for fast-charging Li-ion batteries. Nano Lett. 24(12), 3694–3701 (2024). https://doi.org/10.1021/acs.nanolett.3c05151
S. Zhu, M. Su, S. Lu, S. Yang, Y. Huang et al., Enhanced performance of Mo-doped TiNb2O7 anode material for lithium-ion batteries via KOH sub-molten salt synthesis. Appl. Surf. Sci. 669, 160507 (2024). https://doi.org/10.1016/j.apsusc.2024.160507
C. Yang, D. Ma, J. Yang, M. Manawan, T. Zhao et al., Crystallographic insight of reduced lattice volume expansion in mesoporous Cu2+-doped TiNb2O7 microspheres during Li+ insertion. Adv. Funct. Mater. 33(15), 2212854 (2023). https://doi.org/10.1002/adfm.202212854
Y. Zhang, C. Kang, W. Zhao, B. Sun, X. Xiao et al., Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries. Energy Storage Mater. 47, 178–186 (2022). https://doi.org/10.1016/j.ensm.2022.01.061
G. Yu, J. Huang, X. Bai, T. Li, S. Song et al., Engineering of cerium modified TiNb2O7 nanops for low-temperature lithium-ion battery. Small 20(34), e2308858 (2024). https://doi.org/10.1002/smll.202308858
X. Jin, Y. Deng, H. Tian, M. Zhou, W. Tang et al., Homovalent doping: an efficient strategy of the enhanced TiNb2O7 anode for lithium-ion batteries. Green Energy Environ. 9(8), 1257–1266 (2024). https://doi.org/10.1016/j.gee.2023.01.007
C. Yang, C. Lin, S. Lin, Y. Chen, J. Li, Cu0.02Ti0.94Nb2.04O7: an advanced anode material for lithium-ion batteries of electric vehicles. J. Power. Sources 328, 336–344 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.027
J. Gao, X. Cheng, S. Lou, Y. Ma, P. Zuo et al., Self-doping Ti1-xNb2+xO7 anode material for lithium-ion battery and its electrochemical performance. J. Alloys Compd. 728, 534–540 (2017). https://doi.org/10.1016/j.jallcom.2017.09.045
X. Cao, H. Li, Y. Qiao, P. He, Y. Qian et al., Reversible anionic redox chemistry in layered Li4/7[□1/7Mn6/7]O2 enabled by stable Li-O-vacancy configuration. Joule 6(6), 1290–1303 (2022). https://doi.org/10.1016/j.joule.2022.05.006
J. Ma, Y. Xiang, J. Xu, W. Zhang, H. Zhang et al., Reducing lithium-diffusion barrier on the wadsley-Roth crystallographic shear plane via low-valent cation doping for ultrahigh power lithium-ion batteries. Adv. Energy Mater. 15(12), 2403623 (2025). https://doi.org/10.1002/aenm.202403623
T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). https://doi.org/10.1038/nmat2612
S. Lou, X. Cheng, Y. Zhao, A. Lushington, J. Gao et al., Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy 34, 15–25 (2017). https://doi.org/10.1016/j.nanoen.2017.01.058
L. Zhu, S. Xiang, M. Wang, D. Sun, X. Zhang et al., Lattice regulation boosts working voltage and energy density of Na3.12Fe2.44(P2O7)2 cathode for sodium-ion batteries. Adv. Funct. Mater. 35(26), 2419611 (2025). https://doi.org/10.1002/adfm.202419611
B. Peng, Y. Chen, F. Wang, Z. Sun, L. Zhao et al., Unusual site-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell. Adv. Mater. 34(6), e2103210 (2022). https://doi.org/10.1002/adma.202103210
L. Du, Y. Zhang, Y. Xiao, D. Yuan, M. Yao et al., A defect-rich carbon induced built-in interfacial electric field accelerating ion-conduction towards superior-stable solid-state batteries. Energy Environ. Sci. 18(6), 2949–2961 (2025). https://doi.org/10.1039/D4EE05966B
L. Xu, M. Yao, L. Du, Y. Chen, Y. Wei et al., Accelerating lithium ion conduction via activated interfacial dipole layer for long-life and high-voltage solid-state lithium-metal battery. J. Energy Chem. 108, 92–100 (2025). https://doi.org/10.1016/j.jechem.2025.03.073
Q. Wang, Y. Zhang, M. Yao, K. Li, L. Xu et al., A lithium-selective “OR-gate” enables fast-kinetics and ultra-stable Li-rich cathodes for polymer-based solid-state batteries. Energy Environ. Sci. 18(6), 2931–2939 (2025). https://doi.org/10.1039/D4EE05264A
Y. Zhang, Y. Chen, M. Yan, F. Chen, Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. J. Power. Sources 283, 464–477 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.107
Y. Lu, C.-Z. Zhao, R. Zhang, H. Yuan, L.-P. Hou et al., The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Sci. Adv. 7(38), eabi5520 (2021). https://doi.org/10.1126/sciadv.abi5520
Y. Zhang, M. Yao, P. Jing, Y. Fu, W. Wang et al., Achieving a highly reversible four-electron redox of S/Cu2S for aqueous Zn/S─Cu battery. Angew. Chem. Int. Ed. 137(25), e202501205 (2025). https://doi.org/10.1002/ange.202501205
P. Xue, C. Guo, L. Tan, Hydrogen-bonding crosslinking MXene to highly mechanically stable and super-zincophilic host for stable Zn metal anode. Chem. Eng. J. 472, 145056 (2023). https://doi.org/10.1016/j.cej.2023.145056
S. Li, X. Cao, C.N. Schmidt, Q. Xu, E. Uchaker et al., TiNb2O7/graphene composites as high-rate anode materials for lithium/sodium ion batteries. J. Mater. Chem. A 4(11), 4242–4251 (2016). https://doi.org/10.1039/C5TA10510B
A.G. Ashish, P. Arunkumar, B. Babu, P. Manikandan, S. Sarang et al., TiNb2O7/Graphene hybrid material as high performance anode for lithium-ion batteries. Electrochim. Acta 176, 285–292 (2015). https://doi.org/10.1016/j.electacta.2015.06.122
Y. Zhang, M. Zhang, Y. Liu, H. Zhu, L. Wang et al., Oxygen vacancy regulated TiNb2O7 compound with enhanced electrochemical performance used as anode material in Li-ion batteries. Electrochim. Acta 330, 135299 (2020). https://doi.org/10.1016/j.electacta.2019.135299
G. Wang, Z. Wen, L. Du, Y.-E. Yang, S. Li et al., Hierarchical Ti-Nb oxide microspheres with synergic multiphase structure as ultra-long-life anode materials for lithium-ion batteries. J. Power. Sources 367, 106–115 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.061
X. Wang, G. Shen, Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy 15, 104–115 (2015). https://doi.org/10.1016/j.nanoen.2015.04.011
H. Li, L. Shen, G. Pang, S. Fang, H. Luo et al., TiNb2O7 nanops assembled into hierarchical microspheres as high-rate capability and long-cycle-life anode materials for lithium ion batteries. Nanoscale 7(2), 619–624 (2015). https://doi.org/10.1039/C4NR04847D
S. Gong, Y. Wang, Q. Zhu, M. Li, Y. Wen et al., High-rate lithium storage performance of TiNb2O7 anode due to single-crystal structure coupling with Cr3+-doping. J. Power. Sources 564, 232672 (2023). https://doi.org/10.1016/j.jpowsour.2023.232672
H. Bian, J. Gu, Z. Song, H. Gong, Z. Zhang et al., An effective strategy to achieve high-power electrode by tin doping: Snx-TiNb2O7 as a promising anode material with a large capacity and high-rate performance for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 34(26), 1826 (2023). https://doi.org/10.1007/s10854-023-11183-2