Highly Sensitive Ammonia Gas Sensors at Room Temperature Based on the Catalytic Mechanism of N, C Coordinated Ni Single-Atom Active Center
Corresponding Author: Zhi Yang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 277
Abstract
Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia (NH3). In this study, we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection. Specifically, Ni single-atom active sites based on N, C coordination (Ni–N–C) were interfacially confined on the surface of two-dimensional (2D) MXene nanosheets (Ni–N–C/Ti3C2Tx), and a fully flexible gas sensor (MNPE–Ni–N–C/Ti3C2Tx) was integrated. The sensor demonstrates a remarkable response value to 5 ppm NH3 (27.3%), excellent selectivity for NH3, and a low theoretical detection limit of 12.1 ppb. Simulation analysis by density functional calculation reveals that the Ni single-atom center with N, C coordination exhibits specific targeted adsorption properties for NH3. Additionally, its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction, while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas–solid interface. The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization, which facilitates efficient electron transfer to the 2D MXene conductive network, resulting in the formation of the NH3 gas molecule sensing signal. Furthermore, the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions. This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N, C coordination, which provides a novel gas sensing mechanism for room-temperature trace gas detection research.
Highlights:
1 Exploiting single-atom catalytic activation and targeted adsorption properties, Ni single-atom active sites based on N, C coordination are constructed on the surface of two-dimensional MXene nanosheets (Ni–N–C/Ti3C2Tx), enabling highly sensitive and selective NH3 gas detection.
2 The catalytic activation effect of Ni–N–C/Ti3C2Tx effectively reduces the Gibbs free energy of the sensing elemental reaction, while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas–solid interface.
3 An end-sealing passivation strategy utilizing a conjugated hydrogen bond network of the conductive polymer was employed on MXene-based flexible electrodes, effectively mitigating the oxidative degradation of MXene-based gas sensors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.J. Su, G.R. Chen, C.X. Chen, Q.C. Gong, G.Z. Xie et al., Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 33(35), 2101262 (2021). https://doi.org/10.1002/adma.202101262
- G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada et al., Diagnosing lung cancer in exhaled breath using gold nanops. Nat. Nanotechnol. 4(10), 669–673 (2009). https://doi.org/10.1038/nnano.2009.235
- T. Wang, Y. Wu, Y. Zhang, W. Lv, X. Chen et al., Portable electronic nose system with elastic architecture and fault tolerance based on edge computing, ensemble learning, and sensor swarm. Sens. Actuators B: Chem. 375, 132925 (2023). https://doi.org/10.1016/j.snb.2022.132925
- C. Jackson, G.T. Smith, D.W. Inwood, A.S. Leach, P.S. Whalley et al., Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum. Nat. Commun. 8, 15802 (2017). https://doi.org/10.1038/ncomms15802
- S.Y. Jeong, Y.K. Moon, J. Wang, J.H. Lee, Exclusive detection of volatile aromatic hydrocarbons using bilayer oxide chemiresistors with catalytic overlayers. Nat. Commun. 14(1), 233 (2023). https://doi.org/10.1038/s41467-023-35916-3
- T.S. Chu, C. Rong, L. Zhou, X.Y. Mao, B.W. Zhang et al., Progress and perspectives of single-atom catalysts for gas sensing. Adv. Mater. 35, 2206783 (2022). https://doi.org/10.1002/adma.202206783
- L.J. Zhang, N. Jin, Y.B. Yang, X.Y. Miao, H. Wang et al., Advances on axial coordination design of single-atom catalysts for energy electrocatalysis: a review. Nano-Micro Lett. 15(1), 228 (2023). https://doi.org/10.1007/s40820-023-01196-1
- A.A. Peyghan, S.F. Rastegar, N.L. Hadipour, DFT study of NH3 adsorption on pristine, Ni- and Si-doped graphynes. Phys. Lett. A 378(30–31), 2184–2190 (2014). https://doi.org/10.1016/j.physleta.2014.05.016
- C.F. Yang, R. Zhao, H. Xiang, J. Wu, W.D. Zhong et al., Ni-activated transition metal carbides for efficient hydrogen evolution in acidic and alkaline solutions. Adv. Energy Mater. 10(37), 2002260 (2020). https://doi.org/10.1002/aenm.202002260
- M. Zhou, Y. Jiang, G. Wang, W.J. Wu, W.X. Chen et al., Single-atom Ni–N4 provides a robust cellular NO sensor. Nat. Commun. 11(1), 3188 (2020). https://doi.org/10.1038/s41467-020-17018-6
- H. Shin, W.G. Jung, D.H. Kim, J.S. Jang, Y.H. Kim et al., Single-atom Pt stabilized on one-dimensional nanostructure support via carbon nitride/SnO2 heterojunction trapping. ACS Nano 14(9), 11394–11405 (2020). https://doi.org/10.1021/acsnano.0c03687
- H. Xu, Y.T. Zhao, Q. Wang, G.Y. He, H.Q. Chen, Supports promote single-atom catalysts toward advanced electrocatalysis. Coord. Chem. Rev. 451, 214261 (2022). https://doi.org/10.1016/j.ccr.2021.214261
- Z.J. Yang, S.Y. Lv, Y.Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all–MXene sensors. Nano-Micro Lett. 14(1), 56 (2022). https://doi.org/10.1007/s40820-022-00796-7
- M. Khazaei, A. Ranjbar, M. Ghorbani-Asl, M. Arai, T. Sasaki et al., Nearly free electron states in MXenes. Phys. Rev. B 93, 205125 (2016). https://doi.org/10.1103/PhysRevB.93.205125
- R.X. Hu, D.W. Sha, X. Cao, C.J. Lu, Y.C. Wei et al., Anchoring metal-organic framework-derived ZnTe@C onto elastic Ti3C2Tx MXene with 0D/2D dual confinement for ultrastable potassium-ion storage. Adv. Energy Mater. 12(47), 2203118 (2022). https://doi.org/10.1002/aenm.202203118
- S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
- W.J. Quan, J. Shi, H.Y. Luo, C. Fan, W. Lv et al., Fully flexible MXene-based gas sensor on paper for highly sensitive room-temperature nitrogen dioxide detection. ACS Sens. 8(1), 103–113 (2023). https://doi.org/10.1021/acssensors.2c01748
- F.C. Cao, Y. Zhang, H.Q. Wang, K. Khan, A.K. Tareen et al., Recent advances in oxidation stable chemistry of 2D MXenes. Adv. Mater. 34, 2107554 (2022). https://doi.org/10.1002/adma.202107554
- X.F. Zhao, A. Vashisth, E. Prehn, W.M. Sun, S. Shah et al., Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1(2), 513–526 (2019). https://doi.org/10.1016/j.matt.2019.05.020
- W.Y. Chen, S.N. Lai, C.C. Yen, X.F. Jiang, D. Peroulis et al., Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 14(9), 11490–11501 (2020). https://doi.org/10.1021/acsnano.0c03896
- J.T. Lee, B.C. Wyatt, G.A. Davis Jr., A.N. Masterson, A.L. Pagan et al., Covalent surface modification of Ti3C2Tx MXene with chemically active polymeric ligands producing highly conductive and ordered microstructure films. ACS Nano 15(12), 19600–19612 (2021). https://doi.org/10.1021/acsnano.1c06670
- G.F. He, F.G. Ning, X. Liu, Y.X. Meng, Z.W. Lei et al., High-performance and long-term stability of MXene/PEDOT:PSS-decorated cotton yarn for wearable electronics applications. Adv. Fiber Mater. 6, 1–20 (2023). https://doi.org/10.1007/s42765-023-00348-7
- G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- G. Henkelman, A. Arnaldsson, H. Jonsson, A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36(3), 354–360 (2006). https://doi.org/10.1016/j.commatsci.2005.04.010
- J.X. Li, Y.L. Du, C.X. Huo, S. Wang, C. Cui, Thermal stability of two-dimensional Ti2C nanosheets. Ceram. Int. 41(2), 2631–2635 (2015). https://doi.org/10.1016/j.ceramint.2014.10.070
- M.Q. Zhao, X.Q. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
- L.Y. Zhu, X.Y. Miao, L.X. Ou, L.W. Mao, K.P. Yuan et al., Heterostructured α-Fe2O3@ZnO@ZIF-8 core-shell nanowires for a highly selective MEMS-based ppb-level H2S gas sensor system. Small 18, 2204828 (2022). https://doi.org/10.1002/smll.202204828
- X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M. Wang et al., Nitrogen–Coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018). https://doi.org/10.1002/adma.201706758
- X. Zhang, H. Su, P.X. Cui, Y.Y. Cao, Z.Y. Teng et al., Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production. Nat. Commun. 14, 7115 (2023). https://doi.org/10.1038/s41467-023-42887-y
- H.F. Xiong, A.K. Datye, Y. Wang, Thermally stable single-atom heterogeneous catalysts. Adv. Mater. 33(50), 2004319 (2021). https://doi.org/10.1002/adma.202004319
- S. Uzun, M. Schelling, K. Hantanasirisakul, T.S. Mathis, R. Askeland et al., Additive-free aqueous MXene inks for thermal inkjet printing on textiles. Small 17(1), 2006376 (2021). https://doi.org/10.1002/smll.202006376
- J.X. Ma, S.H. Zheng, Y.X. Cao, Y.Y. Zhu, P. Das et al., Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics. Adv. Energy Mater. 11(23), 2100746 (2021). https://doi.org/10.1002/aenm.202100746
- C.F. Zhang, L. McKeon, M.P. Kremer, S.H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
- J. Liu, L. Mckeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3C2–MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34(5), 2106253 (2022). https://doi.org/10.1002/adma.202106253
- J. Jang, H. Kang, H.C.N. Chakravarthula, V. Subramanian, Fully inkjet-printed transparent oxide thin film transistors using a fugitive wettability switch. Adv. Electron. Mater. 1(7), 1500086 (2015). https://doi.org/10.1002/aelm.201500086
- I. Caballero-Quintana, J.L. Maldonado, M.A. Meneses-Nava, O. Barbosa-Garcia, J. Valenzuela-Benavides et al., Semiconducting polymer thin films used in organic solar cells: a scanning tunneling microscopy study. Adv. Electron. Mater. 5(2), 1800499 (2019). https://doi.org/10.1002/aelm.201800499
- O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman et al., Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10(6), 429–433 (2011). https://doi.org/10.1038/nmat3012
- Y.Z. Shao, L.S. Wei, X.Y. Wu, C.M. Jiang, Y. Yao et al., Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 13(1), 3223 (2022). https://doi.org/10.1038/s41467-022-30648-2
- X.Y. Chen, L.W. Kong, J.A.A. Mehrez, C. Fan, W.J. Quan et al., Outstanding humidity chemiresistors based on imine-linked covalent organic framework films for human respiration monitoring. Nano-Micro Lett. 15(1), 149 (2023). https://doi.org/10.1007/s40820-023-01107-4
- X.T. Jiang, A.V. Kuklin, A. Baev, Y.Q. Ge, H. Agren et al., Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 848, 1–58 (2020). https://doi.org/10.1016/j.physrep.2019.12.006
- G.P. Neupane, B.W. Wang, M. Tebyetekerwa, H.T. Nguyen, M. Taheri et al., Highly enhanced light-matter interaction in MXene quantum dots-monolayer WS2 heterostructure. Small 17(11), 2006309 (2021). https://doi.org/10.1002/smll.202006309
- T. Cheng, Y.Z. Zhang, S. Wang, Y.L. Chen, S.Y. Gao et al., Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. Adv. Funct. Mater. 31(24), 2101303 (2021). https://doi.org/10.1002/adfm.202101303
- J. Li, J. Cao, B. Lu, G.Y. Gu, 3D-printed PEDOT:PSS for soft robotics. Nat. Rev. Mater. 8(9), 604–622 (2023). https://doi.org/10.1038/s41578-023-00587-5
- J.M. Luo, C.L. Wang, H. Wang, X.F. Hu, E. Matios et al., Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv. Funct. Mater. 29(3), 1805946 (2019). https://doi.org/10.1002/adfm.201805946
- Q.X. Feng, B.Y. Huang, X.G. Li, Graphene-based heterostructure composite sensing materials for detection of nitrogen-containing harmful gases. Adv. Funct. Mater. 31(41), 2104058 (2021). https://doi.org/10.1002/adfm.202104058
References
Y.J. Su, G.R. Chen, C.X. Chen, Q.C. Gong, G.Z. Xie et al., Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 33(35), 2101262 (2021). https://doi.org/10.1002/adma.202101262
G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada et al., Diagnosing lung cancer in exhaled breath using gold nanops. Nat. Nanotechnol. 4(10), 669–673 (2009). https://doi.org/10.1038/nnano.2009.235
T. Wang, Y. Wu, Y. Zhang, W. Lv, X. Chen et al., Portable electronic nose system with elastic architecture and fault tolerance based on edge computing, ensemble learning, and sensor swarm. Sens. Actuators B: Chem. 375, 132925 (2023). https://doi.org/10.1016/j.snb.2022.132925
C. Jackson, G.T. Smith, D.W. Inwood, A.S. Leach, P.S. Whalley et al., Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum. Nat. Commun. 8, 15802 (2017). https://doi.org/10.1038/ncomms15802
S.Y. Jeong, Y.K. Moon, J. Wang, J.H. Lee, Exclusive detection of volatile aromatic hydrocarbons using bilayer oxide chemiresistors with catalytic overlayers. Nat. Commun. 14(1), 233 (2023). https://doi.org/10.1038/s41467-023-35916-3
T.S. Chu, C. Rong, L. Zhou, X.Y. Mao, B.W. Zhang et al., Progress and perspectives of single-atom catalysts for gas sensing. Adv. Mater. 35, 2206783 (2022). https://doi.org/10.1002/adma.202206783
L.J. Zhang, N. Jin, Y.B. Yang, X.Y. Miao, H. Wang et al., Advances on axial coordination design of single-atom catalysts for energy electrocatalysis: a review. Nano-Micro Lett. 15(1), 228 (2023). https://doi.org/10.1007/s40820-023-01196-1
A.A. Peyghan, S.F. Rastegar, N.L. Hadipour, DFT study of NH3 adsorption on pristine, Ni- and Si-doped graphynes. Phys. Lett. A 378(30–31), 2184–2190 (2014). https://doi.org/10.1016/j.physleta.2014.05.016
C.F. Yang, R. Zhao, H. Xiang, J. Wu, W.D. Zhong et al., Ni-activated transition metal carbides for efficient hydrogen evolution in acidic and alkaline solutions. Adv. Energy Mater. 10(37), 2002260 (2020). https://doi.org/10.1002/aenm.202002260
M. Zhou, Y. Jiang, G. Wang, W.J. Wu, W.X. Chen et al., Single-atom Ni–N4 provides a robust cellular NO sensor. Nat. Commun. 11(1), 3188 (2020). https://doi.org/10.1038/s41467-020-17018-6
H. Shin, W.G. Jung, D.H. Kim, J.S. Jang, Y.H. Kim et al., Single-atom Pt stabilized on one-dimensional nanostructure support via carbon nitride/SnO2 heterojunction trapping. ACS Nano 14(9), 11394–11405 (2020). https://doi.org/10.1021/acsnano.0c03687
H. Xu, Y.T. Zhao, Q. Wang, G.Y. He, H.Q. Chen, Supports promote single-atom catalysts toward advanced electrocatalysis. Coord. Chem. Rev. 451, 214261 (2022). https://doi.org/10.1016/j.ccr.2021.214261
Z.J. Yang, S.Y. Lv, Y.Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all–MXene sensors. Nano-Micro Lett. 14(1), 56 (2022). https://doi.org/10.1007/s40820-022-00796-7
M. Khazaei, A. Ranjbar, M. Ghorbani-Asl, M. Arai, T. Sasaki et al., Nearly free electron states in MXenes. Phys. Rev. B 93, 205125 (2016). https://doi.org/10.1103/PhysRevB.93.205125
R.X. Hu, D.W. Sha, X. Cao, C.J. Lu, Y.C. Wei et al., Anchoring metal-organic framework-derived ZnTe@C onto elastic Ti3C2Tx MXene with 0D/2D dual confinement for ultrastable potassium-ion storage. Adv. Energy Mater. 12(47), 2203118 (2022). https://doi.org/10.1002/aenm.202203118
S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
W.J. Quan, J. Shi, H.Y. Luo, C. Fan, W. Lv et al., Fully flexible MXene-based gas sensor on paper for highly sensitive room-temperature nitrogen dioxide detection. ACS Sens. 8(1), 103–113 (2023). https://doi.org/10.1021/acssensors.2c01748
F.C. Cao, Y. Zhang, H.Q. Wang, K. Khan, A.K. Tareen et al., Recent advances in oxidation stable chemistry of 2D MXenes. Adv. Mater. 34, 2107554 (2022). https://doi.org/10.1002/adma.202107554
X.F. Zhao, A. Vashisth, E. Prehn, W.M. Sun, S. Shah et al., Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1(2), 513–526 (2019). https://doi.org/10.1016/j.matt.2019.05.020
W.Y. Chen, S.N. Lai, C.C. Yen, X.F. Jiang, D. Peroulis et al., Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 14(9), 11490–11501 (2020). https://doi.org/10.1021/acsnano.0c03896
J.T. Lee, B.C. Wyatt, G.A. Davis Jr., A.N. Masterson, A.L. Pagan et al., Covalent surface modification of Ti3C2Tx MXene with chemically active polymeric ligands producing highly conductive and ordered microstructure films. ACS Nano 15(12), 19600–19612 (2021). https://doi.org/10.1021/acsnano.1c06670
G.F. He, F.G. Ning, X. Liu, Y.X. Meng, Z.W. Lei et al., High-performance and long-term stability of MXene/PEDOT:PSS-decorated cotton yarn for wearable electronics applications. Adv. Fiber Mater. 6, 1–20 (2023). https://doi.org/10.1007/s42765-023-00348-7
G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
G. Henkelman, A. Arnaldsson, H. Jonsson, A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36(3), 354–360 (2006). https://doi.org/10.1016/j.commatsci.2005.04.010
J.X. Li, Y.L. Du, C.X. Huo, S. Wang, C. Cui, Thermal stability of two-dimensional Ti2C nanosheets. Ceram. Int. 41(2), 2631–2635 (2015). https://doi.org/10.1016/j.ceramint.2014.10.070
M.Q. Zhao, X.Q. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
L.Y. Zhu, X.Y. Miao, L.X. Ou, L.W. Mao, K.P. Yuan et al., Heterostructured α-Fe2O3@ZnO@ZIF-8 core-shell nanowires for a highly selective MEMS-based ppb-level H2S gas sensor system. Small 18, 2204828 (2022). https://doi.org/10.1002/smll.202204828
X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M. Wang et al., Nitrogen–Coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018). https://doi.org/10.1002/adma.201706758
X. Zhang, H. Su, P.X. Cui, Y.Y. Cao, Z.Y. Teng et al., Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production. Nat. Commun. 14, 7115 (2023). https://doi.org/10.1038/s41467-023-42887-y
H.F. Xiong, A.K. Datye, Y. Wang, Thermally stable single-atom heterogeneous catalysts. Adv. Mater. 33(50), 2004319 (2021). https://doi.org/10.1002/adma.202004319
S. Uzun, M. Schelling, K. Hantanasirisakul, T.S. Mathis, R. Askeland et al., Additive-free aqueous MXene inks for thermal inkjet printing on textiles. Small 17(1), 2006376 (2021). https://doi.org/10.1002/smll.202006376
J.X. Ma, S.H. Zheng, Y.X. Cao, Y.Y. Zhu, P. Das et al., Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics. Adv. Energy Mater. 11(23), 2100746 (2021). https://doi.org/10.1002/aenm.202100746
C.F. Zhang, L. McKeon, M.P. Kremer, S.H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
J. Liu, L. Mckeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3C2–MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34(5), 2106253 (2022). https://doi.org/10.1002/adma.202106253
J. Jang, H. Kang, H.C.N. Chakravarthula, V. Subramanian, Fully inkjet-printed transparent oxide thin film transistors using a fugitive wettability switch. Adv. Electron. Mater. 1(7), 1500086 (2015). https://doi.org/10.1002/aelm.201500086
I. Caballero-Quintana, J.L. Maldonado, M.A. Meneses-Nava, O. Barbosa-Garcia, J. Valenzuela-Benavides et al., Semiconducting polymer thin films used in organic solar cells: a scanning tunneling microscopy study. Adv. Electron. Mater. 5(2), 1800499 (2019). https://doi.org/10.1002/aelm.201800499
O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman et al., Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10(6), 429–433 (2011). https://doi.org/10.1038/nmat3012
Y.Z. Shao, L.S. Wei, X.Y. Wu, C.M. Jiang, Y. Yao et al., Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 13(1), 3223 (2022). https://doi.org/10.1038/s41467-022-30648-2
X.Y. Chen, L.W. Kong, J.A.A. Mehrez, C. Fan, W.J. Quan et al., Outstanding humidity chemiresistors based on imine-linked covalent organic framework films for human respiration monitoring. Nano-Micro Lett. 15(1), 149 (2023). https://doi.org/10.1007/s40820-023-01107-4
X.T. Jiang, A.V. Kuklin, A. Baev, Y.Q. Ge, H. Agren et al., Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 848, 1–58 (2020). https://doi.org/10.1016/j.physrep.2019.12.006
G.P. Neupane, B.W. Wang, M. Tebyetekerwa, H.T. Nguyen, M. Taheri et al., Highly enhanced light-matter interaction in MXene quantum dots-monolayer WS2 heterostructure. Small 17(11), 2006309 (2021). https://doi.org/10.1002/smll.202006309
T. Cheng, Y.Z. Zhang, S. Wang, Y.L. Chen, S.Y. Gao et al., Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. Adv. Funct. Mater. 31(24), 2101303 (2021). https://doi.org/10.1002/adfm.202101303
J. Li, J. Cao, B. Lu, G.Y. Gu, 3D-printed PEDOT:PSS for soft robotics. Nat. Rev. Mater. 8(9), 604–622 (2023). https://doi.org/10.1038/s41578-023-00587-5
J.M. Luo, C.L. Wang, H. Wang, X.F. Hu, E. Matios et al., Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv. Funct. Mater. 29(3), 1805946 (2019). https://doi.org/10.1002/adfm.201805946
Q.X. Feng, B.Y. Huang, X.G. Li, Graphene-based heterostructure composite sensing materials for detection of nitrogen-containing harmful gases. Adv. Funct. Mater. 31(41), 2104058 (2021). https://doi.org/10.1002/adfm.202104058